1. |
Biasiucci A, Leeb R, Iturrate I, et al. Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nat Commun, 2018, 9(1): 2421.
|
2. |
Pels E G M, Aarnoutse E J, Leinders S, et al. Stability of a chronic implanted brain-computer interface in late-stage amyotrophic lateral sclerosis. Clin Neurophysiol, 2019, 130(10): 1798-1803.
|
3. |
Ganzer P D, Colachis S C 4th, Schwemmer M A, et al. Restoring the sense of touch using a sensorimotor demultiplexing neural interface. Cell, 2020, 181(4): 763-773.
|
4. |
Abdi J, Al-Hindawi A, Ng T, et al. Scoping review on the use of socially assistive robot technology in elderly care. BMJ Open, 2018, 8(2): e018815.
|
5. |
Di Lillo P, Arrichiello F, Di Vito D, et al. BCI-controlled assistive manipulator: developed architecture and experimental results. IEEE Trans Cogn Dev Syst, 2020. DOI: 10.1109/TCDS.2020.2979375.
|
6. |
Abiri R, Borhani S, Sellers E W, et al. A comprehensive review of EEG-based brain-computer interface paradigms. J Neural Eng, 2019, 16(1): 011001.
|
7. |
Si-Mohammed H, Petit J, Jeunet C, et al. Towards BCI-based interfaces for augmented reality: feasibility, design and evaluation. IEEE Trans Vis Comput Graphics, 2020, 26(3): 1608-1621.
|
8. |
McFarland D J. Brain-computer interfaces for amyotrophic lateral sclerosis. Muscle Nerve, 2020, 61(6): 702-707.
|
9. |
McFarland D J, Wolpaw J R. EEG-based brain-computer interfaces. Curr Opin Biomed Eng, 2017, 4: 194-200.
|
10. |
Edelman B J, Meng J, Suma D, et al. Noninvasive neuroimaging enhances continuous neural tracking for robotic device control. Sci Robot, 2019, 4(31): eaaw6844.
|
11. |
He Y, Eguren D, Azorín J M, et al. Brain-machine interfaces for controlling lower-limb powered robotic systems. J Neural Eng, 2018, 15(2): 021004.
|
12. |
Chen X, Zhao B, Wang Y, et al. Control of a 7-DOF robotic arm system with an SSVEP-based BCI. Int J Neural Syst, 2018, 28(8): 1850018.
|
13. |
Benabid A L, Costecalde T, Eliseyev A, et al. An exoskeleton controlled by an epidural wireless brain-machine interface in a tetraplegic patient: a proof-of-concept demonstration. Lancet Neurol, 2019, 18(12): 1112-1122.
|
14. |
Chen X, Zhao B, Wang Y, et al. Combination of high-frequency SSVEP-based BCI and computer vision for controlling a robotic arm. J Neural Eng, 2019, 16(2): 026012.
|
15. |
Ke Y, Liu P, An X, et al. An online SSVEP-BCI system in an optical see-through augmented reality environment. J Neural Eng, 2020, 17(1): 016066.
|
16. |
Fernández-Rodríguez Á, Velasco-Álvarez F, Ron-Angevin R. Review of real brain-controlled wheelchairs. J Neural Eng, 2016, 13(6): 061001.
|
17. |
Jeong J H, Shim K H, Kim D J, et al. Brain-controlled robotic arm system based on multi-directional CNN-BiLSTM network using EEG signals. IEEE Trans Neural Syst Rehabil Eng, 2020, 28(5): 1226-1238.
|
18. |
Hortal E, Ianez E, Ubeda A, et al. Combining a brain-machine interface and an electrooculography interface to perform pick and place tasks with a robotic arm. Robot Auton Syst, 2015, 72: 181-188.
|
19. |
Meng J, Zhang S, Bekyo A, et al. Noninvasive electroencephalogram based control of a robotic arm for reach and grasp tasks. Sci Rep, 2016, 6: 38565.
|
20. |
Zeng H, Wang Y, Wu C, et al. Closed-loop hybrid gaze brain-machine interface based robotic arm control with augmented reality feedback. Front Neurorobot, 2017, 11: 60.
|
21. |
Xu Y, Ding C, Shu X, et al. Shared control of a robotic arm using non-invasive brain-computer interface and computer vision guidance. Rob Auton Syst, 2019, 115: 121-129.
|
22. |
Chen X, Wang Y, Gao S, et al. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface. J Neural Eng, 2015, 12(4): 046008.
|
23. |
Di Russo F, Spinelli D. Electrophysiological evidence for an early attentional mechanism in visual processing in humans. Vision Res, 1999, 39(18): 2975-2985.
|
24. |
Chen X, Wang Y, Nakanishi M, et al. High-speed spelling with a noninvasive brain-computer interface. Proc Natl Acad Sci USA, 2015, 112(44): E6058-E6067.
|
25. |
Nakanishi M, Wang Y, Chen X, et al. Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis. IEEE Trans Biomed Eng, 2018, 65(1): 104-112.
|
26. |
Chen X, Wang Y, Zhang S, et al. Effects of stimulation frequency and stimulation waveform on steady-state visual evoked potentials using a computer monitor. J Neural Eng, 2019, 16(6): 066007.
|
27. |
Chen X, Hu N, Wang Y, et al. Validation of a brain-computer interface version of the digit symbol substitution test in healthy subjects. Comput Biol Med, 2020, 120: 103729.
|
28. |
Putze F, Vourvopoulos A, Lécuyer A, et al. Brain-computer interfaces and augmented/virtual reality. Front Hum Neurosci, 2020, 14: 144.
|
29. |
Park S, Cha H S, Im C H. Development of an online home appliance control system using augmented reality and an SSVEP-based brain-computer interface. IEEE Access, 2019, 7: 163604-163614.
|
30. |
Zhao X, Liu C, Xu Z, et al. SSVEP stimulus layout effect on accuracy of brain-computer interfaces in augmented reality glasses. IEEE Access, 2020, 8: 5990-5998.
|
31. |
Chen Y, Yang C, Chen X, et al. A novel training-free recognition method for SSVEP-based BCIs using dynamic window strategy. J Neural Eng, 2020. DOI: 10.1088/1741-2552/ab914e.
|
32. |
Ahn J W, Ku Y, Kim D Y, et al. Wearable in-the-ear EEG system for SSVEP-based brain-computer interface. Electron Lett, 2018, 54(7): 413-414.
|