1. |
Sung H, Ferlay J, Siegel R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of Incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249.
|
2. |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018, 68(6): 394-424.
|
3. |
Chen Jian, Remulla D, Nguyen J H, et al. Current status of artificial intelligence applications in urology and their potential to influence clinical practice. BJU Int, 2019, 124(4): 567-577.
|
4. |
He Jianxing, Baxter S L, Xu Jie, et al. The practical implementation of artificial intelligence technologies in medicine. Nat Med, 2019, 25(1): 30-36.
|
5. |
Duda R O, Hart P E, Stork D G. Pattern classification. New York: Wiley, 2012.
|
6. |
Mohri M, Rostamizadeh A, Talwalkar A. Foundations of machine learning. London: The MIT Press, 2012.
|
7. |
Parmar C, Grossmann P, Bussink J, al. Machine learning methods for quantitative radiomic biomarkers. Sci Rep, 2015, 5: 13087.
|
8. |
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436-444.
|
9. |
张珺倩, 张远, 尹勇, 等. 机器学习在肿瘤放射治疗领域应用进展. 生物医学工程学杂志, 2019, 36(5): 879-884.
|
10. |
Hosny A, Parmar C, Quackenbush J, et al. Artificial intelligence in radiology. Nat Rev Cancer, 2018, 18(8): 500-510.
|
11. |
陈玉康. 深度神经网络结构搜索与优化方法研究. 北京: 中科院自动化所, 中国科学院大学. 2020.
|
12. |
周志华. 机器学习. 北京: 清华大学出版社, 2016: 29-36.
|
13. |
Goodfellow I, Bengio Y, Courville A, et al; 赵申剑, 黎彧君, 符天凡, 等译. 深度学习. 北京: 人民邮电出版社, 2017: 66.
|
14. |
Cui Enming, Lin Fan, Li Qing, et al. Differentiation of renal angiomyolipoma without visible fat from renal cell carcinoma by machine learning based on whole-tumor computed tomography texture features. Acta Radiol, 2019, 60(11): 1543-1552.
|
15. |
Yang Ruimeng, Wu Jialiang, Sun Lei, et al. Radiomics of small renal masses on multiphasic CT: accuracy of machine learning–based classification models for the differentiation of renal cell carcinoma and angiomyolipoma without visible fat. Eur Radiol, 2020, 30(2): 1254-1263.
|
16. |
Zhou Leilei, Zhang Zuoheng, Chen Yuchen, et al. A deep learning-based radiomics model for differentiating benign and malignant renal tumors. Transl Oncol, 2019, 12(2): 292-300.
|
17. |
Xi I L, Zhao Yijun, Wang Robin, et al. Deep learning to distinguish benign from malignant renal lesions based on routine MR imaging. Clin Cancer Res, 2020, 26(8): 1944-1952.
|
18. |
Cheville J C, Lohse C M, Zincke H, et al. Comparisons of outcome and prognostic features among histologic subtypes of renal cell carcinoma. Am J Surg Pathol, 2003, 27(5): 612-624.
|
19. |
Kocak B, Yardimci A H, Bektas C T, et al. Textural differences between renal cell carcinoma subtypes: machine learning-based quantitative computed tomography texture analysis with independent external validation. Eur J Radiol, 2018, 107: 149-157.
|
20. |
Zhang G M, Shi B, Xue H D, et al. Can quantitative CT texture analysis be used to differentiate subtypes of renal cell carcinoma?. Clin radiol, 2019, 74(4): 287-294.
|
21. |
Li Zhicheng, Zhai Guangtao, Zhang Jinheng, et al. Differentiation of clear cell and non-clear cell renal cell carcinomas by all-relevant radiomics features from multiphase CT: a VHL mutation perspective. Eur Radiol, 2019, 29(8): 3996-4007.
|
22. |
Delahunt B, Cheville J C, Martignoni G, et al. The International Society of Urological Pathology (ISUP) grading system for renal cell carcinoma and other prognostic parameters. Am J Surg Pathol, 2013, 37(10): 1490-1504.
|
23. |
Ding Jiule, Xing Zhaoyu, Jiang Zhenxing, et al. CT-based radiomic model predicts high grade of clear cell renal cell carcinoma. Eur J Radiol, 2018, 103: 51-56.
|
24. |
Bektas C T, Kocak B, Yardimci A H, et al. Clear cell renal cell carcinoma: machine learning-based quantitative computed tomography texture analysis for prediction of Fuhrman nuclear grade. Eur Radiol, 2019, 29(3): 1153-1163.
|
25. |
Kocak B, Durmaz E S, Ates E, et al. Unenhanced CT texture analysis of clear cell renal cell carcinomas: a machine learning-based study for predicting histopathologic nuclear grade. Am J Roentgenol, 2019, 212(6): W132-W139.
|
26. |
Lin Fan, Ma Changyi, Xu Jinpeng, et al. A CT-based deep learning model for predicting the nuclear grade of clear cell renal cell carcinoma. Eur J Radiol, 2020, 129: 109079.
|
27. |
Kocak B, Ates E, Durmaz E S, et al. Influence of segmentation margin on machine learning–based high-dimensional quantitative CT texture analysis: a reproducibility study on renal clear cell carcinomas. Eur Radiol, 2019, 29(9): 4765-4775.
|
28. |
Linguraru M G, Wang Shijun, Shah F, et al. Automated noninvasive classification of renal cancer on multiphase CT. Med Phys, 2011, 38(10): 5738-5746.
|
29. |
Yu Qian, Shi Yinghuan, Sun Jinquan, et al. Crossbar-Net: a novel convolutional neural network for kidney tumor segmentation in CT images. IEEE T Image Process, 2019, 28(8): 4060-4074.
|
30. |
He Yuting, Yang Guanyu, Yang Jian, et al. Meta grayscale adaptive network for 3D integrated renal structures segmentation. Med Image Anal, 2021, 71: 102055.
|
31. |
Kocak B, Durmaz E S, Ates E, et al. Radiogenomics in clear cell renal cell carcinoma: machine learning-based high-dimensional quantitative CT texture analysis in predicting PBRM1 mutation status. Am J Roentgenol, 2019, 212(3): W55-W63.
|
32. |
Ghosh P, Tamboli P, Vikram R, et al. Imaging-genomic pipeline for identifying gene mutations using three-dimensional intra-tumor heterogeneity features. J Med Imaging, 2015, 2(4): 041009.
|
33. |
Eminaga O, Eminaga N, Semjonow A, et al. Diagnostic classification of cystoscopic images using deep convolutional neural networks. JCO Clin Cancer Info, 2018, 2: 1-8.
|
34. |
Lorencin I, Anđelić N, Španjol J, et al. Using multi-layer perceptron with laplacian edge detector for bladder cancer diagnosis. Artif Intell Med, 2020, 102: 101746.
|
35. |
Shkolyar E, Jia X, Chang T C, et al. Augmented bladder tumor detection using deep learning. Eur Urol, 2019, 76(6): 714-718.
|
36. |
Sokolov I, Dokukin M E, Kalaparthi V, et al. Noninvasive diagnostic imaging using machine-learning analysis of nanoresolution images of cell surfaces: detection of bladder cancer. P Nati Acad Sci USA, 2018, 115(51): 12920-12925.
|
37. |
Garapati S S, Hadjiiski L, Cha K H, et al. Urinary bladder cancer staging in CT urography using machine learning. Med Phys, 2017, 44(11): 5814-5823.
|
38. |
Xu Xiaopan, Zhang Xi, Tian Qiang, et al. Three-dimensional texture features from intensity and high-order derivative maps for the discrimination between bladder tumors and wall tissues via MRI. Int J Comput Ass Rad, 2017, 12(4): 645-656.
|
39. |
Chen Siteng, Jiang Liren, Zheng Xinyi, et al. Clinical use of machine learning-based pathomics signature for diagnosis and survival prediction of bladder cancer. Cancer Sci, 2021, 112(7): 2905-2914.
|
40. |
Brieu N, Gavriel C G, Nearchou I P, et al. Automated tumour budding quantification by machine learning augments TNM staging in muscle-invasive bladder cancer prognosis. Sci Rep, 2019, 9(2): 1-19.
|
41. |
McConkey D J, Choi W. Molecular subtypes of bladder cancer. Curr Oncol Rep, 2018, 20(10): 1-7.
|
42. |
Woerl A C, Eckstein M, Geiger J, et al. Deep learning predicts molecular subtype of muscle-invasive bladder cancer from conventional histopathological slides. Eur Urol, 2020, 78(2): 256-264.
|
43. |
Takeuchi T, Hattori-Kato M, Okuno Y, et al. Prediction of prostate cancer by deep learning with multilayer artificial neural network. Can Urol Assoc, 2019, 13(5): E145-E150.
|
44. |
Vente C D, Vos P, Hosseinzadeh M, et al. Deep learning regression for prostate cancer detection and grading in bi-parametric MRI. IEEE T Biomed Eng, 2020, 68(2): 374-383.
|
45. |
Ishioka J, Matsuoka Y, Uehara S, et al. Computer-aided diagnosis of prostate cancer on magnetic resonance imaging using a convolutional neural network algorithm. BJU Int, 2018, 122(3): 411-417.
|
46. |
Kott O, Linsley D, Amin A, et al. Development of a deep learning algorithm for the histopathologic diagnosis and Gleason grading of prostate cancer biopsies: a pilot study. Eur Urol Focus, 2021, 7(2): 347-351.
|
47. |
Sauter G, Steurer S, Clauditz T S, et al. Clinical utility of quantitative Gleason grading in prostate biopsies and prostatectomy specimens. Eur Urol, 2016, 69(4): 592-598.
|
48. |
Nir G, Karimi D, Goldenberg S L, et al. Comparison of artificial intelligence techniques to evaluate performance of a classifier for automatic grading of prostate cancer from digitized histopathologic images. JAMA Netw open, 2019, 2(3): e190442.
|
49. |
Bulten W, Pinckaers H, van Boven H, et al. Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study. Lancet Oncol, 2020, 21(2): 233-241.
|
50. |
Yan Ke, Wang Xiuying, Kim Jinman, et al. A propagation-DNN: deep combination learning of multi-level features for MR prostate segmentation. Comput Meth Prog Bio, 2019, 170: 11-21.
|
51. |
Liu Chang, Gardner S J, Wen Ning, et al. Automatic segmentation of the prostate on CT images using deep neural networks (DNN). Int J Radiat Oncol, 2019, 104(4): 924-932.
|
52. |
van Sloun R J G, Wildeboer R R, Mannaerts C K, et al. Deep learning for real-time, automatic, and scanner-adapted prostate (zone) segmentation of transrectal ultrasound, for example, magnetic resonance imaging-transrectal ultrasound fusion prostate biopsy. Eur Urol Focus, 2021, 7(1): 78-85.
|
53. |
Liu Dingyi, Peng Xin, Liu Xiaoqing, et al. A real-time system using deep learning to detect and track ureteral orifices during urinary endoscopy. Comput Biol Med, 2021, 128: 104104.
|
54. |
Peng Xin, Liu Dingyi, Li Yiming, et al. Real-time detection of ureteral orifice in urinary endoscopy videos based on deep learning// 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Berlin: IEEE, 2019: 1637-1640.
|
55. |
钟宇, 田芳, 邹明宇, 等. 基于PI-RADS v2. 1不同参数磁共振成像对前列腺癌诊断效能的比较. 中国医科大学学报, 2020, 49(10): 915-920.
|
56. |
Sokolov I, Dokukin M E. Imaging of soft and biological samples using AFM ringing mode. Methods Mol Biol, 2018, 1814: 469-482.
|
57. |
Bellmunt J. Stem-like signature predicting disease progression in early stage bladder cancer. The role of E2F3 and SOX4. Biomedicines, 2018, 6(3): 85.
|