1. |
Inose H, Hirai T, Yoshii T, et al. Predictors associated with neurological recovery after anterior decompression with fusion for degenerative cervical myelopathy. BMC Surg, 2021, 21(1): 144.
|
2. |
Walter C, Baumgärtner T, Trappe D, et al. Influence of cage design on radiological and clinical outcomes in dorsal lumbar spinal fusions: a comparison of lordotic and non-lordotic cages. Orthop Surg, 2021, 13(3): 863-875.
|
3. |
Shen J L, Xu S, Xu S X, et al. Fusion or not for degenerative lumbar spinal stenosis: a meta-analysis and systematic review. Pain Physician, 2018, 21(1): 1-8.
|
4. |
Verma R, Virk S, Qureshi S. Interbody fusions in the lumbar spine: a review. HSS J, 2020, 16(2): 162-167.
|
5. |
Bydon M, Goyal A, Yolcu Y. Novel intervertebral technologies. Neurosurg Clin N Am, 2020, 31(1): 49-56.
|
6. |
胡美娟, 吉玲康, 马秋荣, 等. 激光增材制造技术及现状研究. 石油管材与仪器, 2019, 5(5): 1-6.
|
7. |
Bremen S, Meiners W, Diatlov A. Selective laser melting: a manufacturing technology for the future?. Laser Tech J, 2012, 9(2): 33-38.
|
8. |
Marola S, Manfredi D, Fiore G, et al. A comparison of selective laser melting with bulk rapid solidification of AlSi10Mg alloy. J Alloys Compd, 2018, 742: 271-279.
|
9. |
Pacheco V, Karlsson D, Marattukalam J J, et al. Thermal stability and crystallization of a Zr-based metallic glass produced by suction casting and selective laser melting. J Alloys Compd, 2020, 825: 153995.
|
10. |
Cao Q Q, Shi Z Q, Bai Y C, et al. A novel method to improve the removability of cone support structures in selective laser melting of 316L stainless steel. J Alloys Compd, 2021, 854: 157133.
|
11. |
Dave V R, Matz J E, Eagar T W. Electron beam solid freeform fabrication of metal parts//Proceedings of the Solid Freeform Fabrication Symposium. Austin: University of Texas, 1995: 64-71.
|
12. |
Yuan L, Ding S, Wen C. Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: a review. Bioact Mater, 2019, 4(1): 56-70.
|
13. |
Sabzi H E. Powder bed fusion additive layer manufacturing of titanium alloys. Mater Sci Technol, 2019, 35(8): 875-890.
|
14. |
杨坤. 粉床电子束增材制造生物医用钛合金的组织与性能研究. 长春: 吉林大学, 2020.
|
15. |
Buj-Corral I, Tejo-Otero A, Fenollosa-Artés F. Development of AM technologies for metals in the sector of medical implants. Metals, 2020, 10(5): 686.
|
16. |
Wong K C, Scheinemann P. Additive manufactured metallic implants for orthopaedic applications. Sci China Mater, 2018, 61(4): 440-454.
|
17. |
Popov V J, Muller-Kamskii G, Kovalevsky A, et al. Design and 3D-printing of titanium bone implants: brief review of approach and clinical cases. Biomed Eng Lett, 2018, 8(4): 337-344.
|
18. |
Moiduddin K. Implementation of computer-assisted design, analysis, and additive manufactured customized mandibular implants. J Med Biol Eng, 2018, 38(5): 744-756.
|
19. |
Jinoop A N, Subbu S K, Kumar R A. Mechanical and microstructural characterisation on direct metal laser sintered Inconel 718. Int J Additive and Subtractive Materials Manufacturing, 2018, 2(1): 1-12.
|
20. |
Brogini S, Sartori M, Giavaresi G, et al. Osseointegration of additive manufacturing Ti-6Al-4V and Co-Cr-Mo alloys, with and without surface functionalization with hydroxyapatite and type I collagen. J Mech Behav Biomed Mater, 2021, 115: 104262.
|
21. |
Srinivasan D, Singh A, Reddy A S, et al. Microstructural study and mechanical characterisation of heat-treated direct metal laser sintered Ti6Al4V for biomedical applications. Mater Technol, 2020: 1-12.
|
22. |
Buj-Corral I, Domínguez-Fernández A, Gómez-Gejo A. Effect of printing parameters on dimensional error and surface roughness obtained in direct ink writing (DIW) processes. Materials, 2020, 13(9): 2157.
|
23. |
Shanmugam V, Das O, Babu K, et al. Fatigue behaviour of FDM-3D printed polymers, polymeric composites and architected cellular materials. Int J Fatigue, 2020, 143: 106007.
|
24. |
Azad M A, Olawuni D, Kimbell G, et al. Polymers for extrusion-based 3D printing of pharmaceuticals: a holistic materials-process perspective. Pharmaceutics, 2020, 12(2): 124.
|
25. |
Rinaldi M, Ghidini T, Cecchini F, et al. Additive layer manufacturing of poly (ether ether ketone) via FDM. Composites (Part B), 2018, 145: 162-172.
|
26. |
Warburton A, Girdler S J, Mikhail C M, et al. Biomaterials in spinal implants: a review. Neurospine, 2020, 17(1): 101-110.
|
27. |
Zhang Z, Li H, Fogel G R, et al. Finite element model predicts the biomechanical performance of transforaminal lumbar interbody fusion with various porous additive manufactured cages. Comput Biol Med, 2018, 95: 167-174.
|
28. |
Enders J J, Coughlin D, Mroz T E, et al. Surface technologies in spinal fusion. Neurosurg Clin N Am, 2020, 31(1): 57-64.
|
29. |
杨柳, 王富友. 医学 3D 打印多孔钽在骨科的应用. 第三军医大学学报, 2019, 41(19): 1859-1866.
|
30. |
Zhang W N, Wang L Z, Feng Z X, et al. Research progress on selective laser melting (SLM) of Magnesium alloys: a review. Optik, 2020, 207: 163842.
|
31. |
朱兆雨. 激光选区熔化镁合金成型工艺和组织性能研究. 苏州: 苏州大学, 2019.
|
32. |
Daentzer D, Willbold E, Kalla K, et al. Bioabsorbable interbody magnesium-polymer cage: degradation kinetics, biomechanical stiffness, and histological findings from an ovine cervical spine fusion model. Spine, 2014, 39(20): E1220-E1227.
|
33. |
Haleem A, Javaid M. Polyether ether ketone (PEEK) and its 3D printed implants applications in medical field: an overview. Clin Epidemiol Glob, 2019, 7(4): 571-577.
|
34. |
Basgul C, Yu T, Macdonald D W, et al. Structure-property relationships for 3D printed PEEK intervertebral lumbar cages produced using fused filament fabrication. J Mater Res, 2018, 33(14): 2040-2051.
|
35. |
Basgul C, Yu T, Macdonald D W, et al. Does annealing improve the interlayer adhesion and structural integrity of FFF 3D printed PEEK lumbar spinal cages?. J Mech Behav Biomed Mater, 2020, 102: 103455.
|
36. |
Basgul C, Macdonald D W, Siskey R, et al. Thermal localization improves the interlayer adhesion and structural integrity of 3D printed PEEK lumbar spinal cages. Materialia, 2020, 10: 100650.
|
37. |
Duan Y S, Liu N, Zhang J X, et al. Cost effective preparation of Si3N4 ceramics with improved thermal conductivity and mechanical properties. J Eur Ceram Soc, 2020, 40(2): 298-304.
|
38. |
Rodzeń K, Sharma P K, Mcilhagger A, et al. The direct 3D printing of functional PEEK/hydroxyapatite composites via a fused filament fabrication approach. Polymers, 2021, 13(4): 545.
|
39. |
杨接来, 徐俊, 谷辉杰, 等. 3D 打印聚乳酸/纳米级 β-磷酸钙可吸收山羊颈椎融合器的生物相容性及生物力学评价. 中国临床医学, 2017, 24(4): 525-530.
|
40. |
从铭. 3D 打印羟基磷灰石椎间融合器及生物力学分析. 青岛: 青岛大学, 2016.
|
41. |
Burnard J L, Parr W, Choy W J, et al. 3D-printed spine surgery implants: a systematic review of the efficacy and clinical safety profile of patient-specific and off-the-shelf devices. Eur Spine J, 2020, 29(6): 1248-1260.
|
42. |
Mokawem M, Katzouraki G, Harman C L, et al. Lumbar interbody fusion rates with 3D-printed lamellar titanium cages using a silicate-substituted calcium phosphate bone graft. J Clin Neurosci, 2019, 68: 134-139.
|
43. |
Chung S S, Lee K J, Kwon Y B, et al. Characteristics and efficacy of a new 3-dimensional printed mesh structure Titanium alloy spacer for posterior lumbar interbody fusion. Orthopedics, 2017, 40(5): e880-e885.
|
44. |
van den Brink W, Lamerigts N. Complete osseointegration of a retrieved 3-D printed porous titanium cervical cage. Front Surg, 2020, 7: 526020.
|
45. |
刘正蓬, 王雅辉, 张义龙, 等. 3D 打印椎间融合器置入治疗脊髓型颈椎病: 颈椎曲度及椎间高度恢复的半年随访. 中国组织工程研究, 2021, 25(6): 849-853.
|
46. |
杨旭, 赵晓峰, 齐德泰, 等. 3D 打印 ACT 钛金骨小梁椎间融合器行颈椎前路减压融合后颈椎的矢状位平衡变化. 中国组织工程研究, 2020, 24(36): 5741-5748.
|
47. |
Arts M, Torensma B, Wolfs J. Porous Titanium cervical interbody fusion device in the treatment of degenerative cervical radiculopathy; 1-year results of a prospective controlled trial. Spine J, 2020, 20(7): 1065-1072.
|
48. |
Spetzger U, Frasca M, König S A. Surgical planning, manufacturing and implantation of an individualized cervical fusion Titanium cage using patient-specific data. Eur Spine J, 2016, 25(7): 2239-2246.
|
49. |
吴敏飞, 王洋, 矫健航, 等. 3D 打印椎间融合器在脊髓型颈椎病椎间盘摘除减压融合内固定术的应用效果. 中华骨与关节外科杂志, 2019, 12(2): 98-101.
|
50. |
Siu T L, Rogers J M, LIN K, et al. Custom-made titanium 3-dimensional printed interbody cages for treatment of osteoporotic fracture-related spinal deformity. World Neurosurg, 2018, 111: 1-5.
|
51. |
夏天, 孙宇, 赵衍斌, 等. 3D 打印定制钛合金融合器在先天性颈椎侧凸畸形治疗中的应用. 中国脊柱脊髓杂志, 2020, 30(9): 791-796.
|
52. |
Alam F, Varadarajan K M, Koo J H, et al. Additively manufactured polyetheretherketone (PEEK) with carbon nanostructure reinforcement for biomedical structural applications. Adv Eng Mater, 2020, 22(10): 2000483.
|
53. |
Li Y, Li L T, Ma Y G, et al. 3D-printed titanium cage with PVA‐vancomycin coating prevents surgical site infections (SSIs). Macromol Biosci, 2020, 20(3): 1900394.
|