1. |
Das A, Cash S S, Sejnowski T J. Heterogeneity of preictal dynamics in human epileptic seizures. IEEE Access, 2020, 8: 52738-52748.
|
2. |
Cook M J, O'Brien T J, Berkovic S F, et al. Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study. Lancet Neurol, 2013, 12(6): 563-571.
|
3. |
Yuan Q, Zhou W D, Zhang L R, et al. Epileptic seizure detection based on imbalanced classification and wavelet packet transform. Seizure-Eur J Epilep, 2017, 50: 99-108.
|
4. |
葛燕, 刘崇, 孟凡刚, 等. 脑深部电刺激在癫痫治疗中的应用进展. 中华医学杂志, 2013(7): 558-559.
|
5. |
李尊钰, 袁冠前, 黄平, 等. 基于立体定向脑电图的颞叶致痫网络独立有效相干分析. 生物医学工程学杂志, 2019, 36(4): 541-547.
|
6. |
覃小雅, 袁媛, 陈彦, 等. 头皮脑电图在迷走神经电刺激治疗难治性癫痫研究中的应用. 生物医学工程学杂志, 2020, 37(4): 699-707.
|
7. |
黄莎, 肖波, 冯莉, 等. 187例成人睡眠相关性癫痫患者的临床特征及视频脑电图分析. 癫痫杂志, 2019, 5(1): 16-20.
|
8. |
金洋, 张玮, 徐斌, 等. 发作期头皮电极脑电图在局灶性癫痫诊断中的价值. 癫痫杂志, 2019, 5(6): 431-439.
|
9. |
Peng P Z, Wei H K, Xie L P, et al. Epileptic seizure prediction in scalp EEG using an improved hive-cote model// 39th Chinese Control Conference (CCC). Shenyang: TCCT, 2020: 6450-6457.
|
10. |
Xu Y, Yang J, Zhao S, et al. An end-to-end deep learning approach for epileptic seizure prediction// 2020 2nd IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS). Genova: IEEE, 2020: 266-270.
|
11. |
Yuan S S, Zhou W D, Chen L Y. Epileptic seizure prediction using diffusion distance and bayesian linear discriminate analysis on intracranial EEG. Int J Neural Syst, 2018, 28(1): 1750043.
|
12. |
Mahmoodian N, Haddadnia J, Illanes A, et al. Seizure prediction with cross-higher-order spectral analysis of EEG signals. Signal Image Video P, 2020, 14(4): 821-828.
|
13. |
Wang G, Wang D, Du C W, et al. Seizure prediction using directed transfer function and convolution neural network on intracranial EEG. IEEE Trans Neural Syst Rehabil Eng, 2020, 28(12): 2711-2720.
|
14. |
王蕾. 基于多路脑电分析的癫痫发作预测算法初步研究. 西安: 第四军医大学, 2008.
|
15. |
Sharma A, Rai J K, Tewar R P, et al. Multivariate EEG signal analysis for early prediction of epileptic seizure// 2nd International Conference on Recent Advances in Engineering. Chandigarh: IEEE, 2015: 1-5.
|
16. |
Sharma A. Epileptic seizure prediction using power analysis in beta band of EEG signals// 2015 International Conference on Soft Computing Techniques and Implementations (ICSCTI). Faridabad: IEEE, 2015: 117-121.
|
17. |
Li S F, Zhou W D, Yuan Q, et al. Seizure prediction using spike rate of intracranial EEG. IEEE Trans Neural Syst Rehabil Eng, 2013, 21(6): 880-886.
|
18. |
Zandi A S, Tafreshi R, Javidan M, et al. Predicting epileptic seizures in scalp EEG based on a variational bayesian gaussian mixture model of zero-crossing intervals. IEEE Trans Biomed Eng, 2013, 60(5): 1401-1413.
|
19. |
Li F L, Liang Y, Zhang L Y, et al. Transition of brain networks from an interictal to a preictal state preceding a seizure revealed by scalp EEG network analysis. Cogn Neurodyn, 2019, 13(2): 175-181.
|
20. |
Muhlberg K, Muller J, Tetzlaff R. Seizure prediction by multivariate autoregressive model order optimization. Current Directions in Biomedical Engineering, 2018, 4(1): 395-398.
|
21. |
Osman A H, Alzahrani A A. New approach for automated epileptic disease diagnosis using an integrated self-organization map and radial basis function neural network algorithm. IEEE Access, 2019, 7: 4741-4747.
|
22. |
Daoud H, Williams P, Bayoumi M, et al. IoT based efficient epileptic seizure prediction system using deep learning// 6th IEEE Virtual World Forum on Internet of Things (IEEE WF-IoT). New Orleans: IEEE, 2020: 1-6.
|
23. |
Zhang R J, Jiang X Y, Dai C Y, et al. Tensor-based uncorrelated multilinear discriminant analysis for epileptic seizure prediction// 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Montreal: IEEE, 2020: 541-544.
|
24. |
Naftulin J S, Ahmed O J, Piantoni G, et al. Ictal and preictal power changes outside of the seizure focus correlate with seizure generalization. Epilepsia, 2018, 59(7): 1398-1409.
|
25. |
Kitano L A S, Sousa M A A, Santos S D, et al. Epileptic seizure prediction from EEG signals using unsupervised learning and a polling-based decision process// 27th International Conference on Artificial Neural Networks (ICANN). Rhodes: ENNS, 2018: 117-126.
|
26. |
Raghu S, Sriraam N, Rao S V, et al. Automated detection of epileptic seizures using successive decomposition index and support vector machine classifier in long-term EEG. Neural Comput Appl, 2020, 32(13): 8965-8984.
|
27. |
Mahmoodian N, Boese A, Friebe M, et al. Epileptic seizure detection using cross-bispectrum of electroencephalogram signal. Seizure-Eur J Epilep, 2019, 66: 4-11.
|
28. |
Liu Xuefei, Li Jinbao, Shu Minglei. Epileptic seizure prediction based on region correlation of EEG signal// 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS) Proceedings. Rochester: IEEE, 2020: 120-125.
|
29. |
Zhang Q Z, Hu Y J, Potter T, et al. Establishing functional brain networks using a nonlinear partial directed coherence method to predict epileptic seizures. J Neurosci Methods, 2020, 329: 108447.
|
30. |
Yuan Q, Wei D M. A seizure prediction method based on efficient features and BLDA// IEEE International Conference on Digital Signal Processing (DSP). Singapore: IEEE, 2015: 177-181.
|
31. |
Usman S M, Latif S, Beg A. Principle components analysis for seizures prediction using wavelet transform. Int J Adv Appl Sci, 2019, 6(3): 50-55.
|
32. |
Chen S N, Zhang X, Chen L L, et al. Automatic diagnosis of epileptic seizure in electroencephalography signals using nonlinear dynamics features. IEEE Access, 2019, 7: 61046-61056.
|
33. |
Alickovic E, Kevric J, Subasi A. Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction. Biomed Signal Proces, 2018, 39: 94-102.
|
34. |
Truong N D, Nguyen A D, Kuhlmann L, et al. A generalised seizure prediction with convolutional neural networks for intracranial and scalp electroencephalogram data analysis. arXiv, 2017: 1707.01976.
|
35. |
单绍杰, 李汉军, 王璐璐, 等. 基于LSTM模型的单导联脑电癫痫发作预测. 计算机应用研究, 2018, 35(11): 3251-3254.
|
36. |
王雅静, 王群, 李博闻, 等. 基于脑电信号预发作数据段选取的癫痫发作预测. 浙江大学学报(工学版), 2020, 54(11): 2258-2265.
|
37. |
Yoo Y. On predicting epileptic seizures from intracranial electroencephalography. Biomed Eng Lett, 2017, 7(1): 1-5.
|
38. |
Khalid M I, Aldosari S A, Alshebeili S A, et al. Online adaptive seizure prediction algorithm for scalp EEG// International Conference on Information and Communication Technology Research (ICTRC 2015). Abu Dhabi: IEEE, 2015: 44-47.
|
39. |
Aarabi A, He B. Seizure prediction in patients with focal hippocampal epilepsy. Clin Neurophysiol, 2017, 128(7): 1299-1307.
|
40. |
Cho D, Min B, Kim J, et al. EEG-based prediction of epileptic seizures using phase synchronization elicited from noise-assisted multivariate empirical mode decomposition. IEEE Trans Neural Syst Rehabil Eng, 2017, 25(8): 1309-1318.
|
41. |
韩凌, 王宏. 基于空频域特征分析方法的癫痫发作预测. 仪器仪表学报, 2014, 35(11): 2501-2507.
|
42. |
周梦妮, 崔会芳, 曹锐, 等. 基于排列熵和支持向量机的癫痫发作预测研究. 计算机应用研究, 2019, 36(6): 1696-1699.
|
43. |
Ozcan A R, Erturk S. Seizure prediction in scalp EEG using 3D convolutional neural networks with an image-based approach. IEEE Trans Neural Syst Rehabil Eng, 2019, 27(11): 2284-2293.
|
44. |
Namazi H, Kulish V V, Hussaini J, et al. A signal processing based analysis and prediction of seizure onset in patients with epilepsy. Oncotarget, 2016, 7(1): 342-350.
|
45. |
Zhang Y L, Yang R D, Zhou W D. Roughness-length-based characteristic analysis of intracranial EEG and epileptic seizure prediction. Int J Neural Syst, 2020, 30(12): 2050072.
|
46. |
Fei K L, Wang W, Yang Q L, et al. Chaos feature study in fractional Fourier domain for preictal prediction of epileptic seizure. Neurocomputing, 2017, 249: 290-298.
|
47. |
崔嵩. 基于神经网络的癫痫脑电预测和源定位问题研究. 北京: 北京工业大学, 2019.
|
48. |
Liu C L, Xiao B, Hsaio W H, et al. Epileptic seizure prediction with multi-view convolutional neural networks. IEEE Access, 2019, 7: 170352-170361.
|
49. |
Masum M, Shahriar H, Haddad H M, et al. Epileptic seizure detection for imbalanced datasets using an integrated machine learning approach// 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Montreal: IEEE, 2020: 5416-5419.
|
50. |
Zhang Y, Guo Y, Yang P, et al. Epilepsy seizure prediction on EEG using common spatial pattern and convolutional neural network. IEEE J Biomed Health, 2020, 24(2): 465-474.
|
51. |
Chisci L, Mavino A, Perferi G, et al. Real-time epileptic seizure prediction using ar models and support vector machines. IEEE Trans Biomed Eng, 2010, 57(5): 1124-1132.
|
52. |
Karthick P A, Tanaka H, Khoo H M, et al. Prediction of secondary generalization from a focal onset seizure in intracerebral EEG. Clin Neurophysiol, 2018, 129(5): 1030-1040.
|
53. |
Assi E B, Nguyen D K, Rihana S, et al. A functional-genetic scheme for seizure forecasting in canine epilepsy. IEEE Trans Biomed Eng, 2018, 65(6): 1339-1348.
|
54. |
Varatharajah Y, Iyer R K, Berry B M, et al. Seizure forecasting and the preictal state in canine epilepsy. Int J Neural Syst, 2017, 27(1): 1650046.
|
55. |
Bandarabadi M, Teixeira C A, Rasekhi J, et al. Epileptic seizure prediction using relative spectral power features. Clin Neurophysiol, 2015, 126(2): 237-248.
|
56. |
Wang N, Lyu M R. Extracting and selecting distinctive EEG features for efficient epileptic seizure prediction. IEEE J Biomed Health, 2015, 19(5): 1648-1659.
|
57. |
韩敏, 王明慧, 洪晓军, 等. 基于概率判决极端学习机的癫痫发作预报研究. 中国生物医学工程学报, 2012, 31(2): 175-183.
|
58. |
Nesaei S, Sharafat A R. Real-time mining of epileptic seizure precursors via nonlinear mapping and dissimilarity features. IET Signal Processing, 2015, 9(3): 193-200.
|
59. |
Zhang Z S, Parhi K K. Low-complexity seizure prediction from iEEG/sEEG using spectral power and ratios of spectral power. IEEE T Biomed Circ S, 2016, 10(3): 693-706.
|
60. |
Shiao H T, Cherkassky V, Lee J, et al. SVM-based system for prediction of epileptic seizures from iEEG signal. IEEE Trans Biomed Eng, 2017, 64(5): 1011-1022.
|
61. |
Hussain L. Detecting epileptic seizure with different feature extracting strategies using robust machine learning classification techniques by applying advance parameter optimization approach. Cogn Neurodyn, 2018, 12(3): 271-294.
|
62. |
Elgohary S, Eldawlatly S, Khalil M I, et al. Epileptic seizure prediction using zero-crossings analysis of EEG wavelet detail coefficients// 13th IEEE Annual Conference on Computational Intelligence in Bioinformatics and Computational Biology (IEEE CIBCB). Chiang Mai: IEEE, 2016: 6.
|
63. |
Mohan N, Shanir P P M, Sulthan N, et al. Automatic epileptic seizure prediction in scalp EEG// 2nd International Conference on Intelligent Circuits and Systems (ICICS). Phagwara: IEEE, 2018: 275-280.
|
64. |
Hasan M K, Ahamed M A, Ahmad M, et al. Prediction of epileptic seizure by analysing time series EEG signal using k-NN classifier. Appl Bionics Biomech, 2017, 2017(4): 1-12.
|
65. |
Sun M R, Wang F X, Min T F, et al. Prediction for high risk clinical symptoms of epilepsy based on deep learning algorithm. IEEE Access, 2018, 6: 77596-77605.
|
66. |
Parvez M Z, Paul M. Seizure prediction using undulated global and local features. IEEE Trans Biomed Eng, 2017, 64(1): 208-217.
|
67. |
Parvez M Z, Paul M. Epileptic seizure prediction by exploiting spatiotemporal relationship of EEG signals using phase correlation. IEEE Trans Neural Syst Rehabil Eng, 2016, 24(1): 158-168.
|
68. |
Parvez M Z, Paul M. Seizure prediction by analyzing EEG signal based on phase correlation// 37th Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society (EMBC). Milan: IEEE, 2015: 2888-2891.
|
69. |
孙志军, 薛磊, 许阳明, 等. 深度学习研究综述. 计算机应用研究, 2012, 29(8): 2806-2810.
|
70. |
张荣, 李伟平, 莫同. 深度学习研究综述. 信息与控制, 2018, 47(4): 385-397, 410.
|
71. |
Yu Z Y, Nie W W, Zhou W D, et al. Epileptic seizure prediction based on local mean decomposition and deep convolutional neural network. J Supercomput, 2020, 76(5): 3462-3476.
|
72. |
Liu G Y, Zhou W D, Geng M X. Automatic seizure detection based on S-transform and deep convolutional neural network. Int J Neural Syst, 2020, 30(4): 1950024.
|
73. |
Abdelhameed A M, Bayoumi M. Semi-supervised deep learning system for epileptic seizures onset prediction// 17th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA). Orlando: IEEE, 2018: 1186-1191.
|
74. |
Tang L H, Xie N, Zhao M L, et al. Seizure prediction using multi-view features and improved convolutional gated recurrent network. IEEE Access, 2020, 8: 172352-172361.
|
75. |
Zhang S S, Chen D, Ranjan R, et al. A lightweight solution to epileptic seizure prediction based on EEG synchronization measurement. J Supercomput, 2021, 77(4): 3914-3932.
|
76. |
Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets// 28th Conference on Neural Information Processing Systems (NIPS). Montreal: NIPS, 2014: 2672-2680.
|
77. |
Truong N D, Kuhlmann L, Bonyadi M R, et al. Epileptic seizure forecasting with generative adversarial networks. IEEE Access, 2019, 7: 143999-144009.
|
78. |
Affes A, Mdhaffar A, Triki C, et al. A convolutional gated recurrent neural network for epileptic seizure prediction// 17th International Conference on Smart Living and Public Health (ICOST). New York City: Med NYA, 2019: 85-96.
|
79. |
Shahbazi M, Aghajan H. A generalizable model for seizure prediction based on deep learning using CNN-LSTM architecture// IEEE Global Conference on Signal and Information Processing (GlobalSIP). Anaheim: IEEE, 2018: 469-473.
|
80. |
Cho K, van Merrienboer B, Gulcehre C, et al. Learning phrase representations using RNN Encoder-Decoder for statistical machine translation// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha: Association for Computational Linguistics, 2014: 1724-1734.
|
81. |
Daoud H, Bayoumi M. Deep learning based reliable early epileptic seizure predictor// IEEE Biomedical Circuits and Systems Conference (BioCAS)-Advanced Systems for Enhancing Human Health. Cleveland: IEEE, 2018: 319-322.
|
82. |
Daoud H, Bayoumi M A. Efficient epileptic seizure prediction based on deep learning. IEEE T Biomed Circ S, 2019, 13(5): 804-813.
|
83. |
Fathima T, Paul J K, Bedeeuzzaman M. Epileptic seizure prediction in scalp EEG using one dimensional local binary pattern based features// BIOSTEC 2016 9th International Joint Conference on Biomedical Engineering Systems and Technologies Proceedings: Biosignals. Rome: INSTICC, 2016: 25-33.
|
84. |
Aarabi A, He B. Seizure prediction in hippocampal and neocortical epilepsy using a model-based approach. Clin Neurophysiol, 2014, 125(5): 930-940.
|
85. |
Truong N D, Nguyen A D, Kuhlmann L, et al. Convolutional neural networks for seizure prediction using intracranial and scalp electroencephalogram. Neural Netw, 2018, 105: 104-111.
|
86. |
Alotaiby T N, Alshebeili S A, Alotaibi F M, et al. Epileptic seizure prediction using CSP and LDA for scalp EEG signals. Comput Intel Neurosc, 2017, 2017: 1240323.
|
87. |
Usman S M, Khalid S, Aslam M H. Epileptic seizures prediction using deep learning techniques. IEEE Access, 2020, 8: 39998-40007.
|
88. |
Ma D B, Zheng J T, Peng L Z. Performance evaluation of epileptic seizure prediction using time, frequency, and time-frequency domain measures. Processes, 2021, 9(4): 682.
|
89. |
Abdelhameed A M, Bayoumi M, IEEE. An efficient deep learning system for epileptic seizure prediction// 2021 IEEE International Symposium on Circuits and Systems (IEEE ISCAS). Daegu: IEEE, 2021: 1-5.
|
90. |
Li C S, Zhou W D, Liu G Y, et al. Seizure onset detection using empirical mode decomposition and common spatial pattern. IEEE Trans Neural Syst Rehabil Eng, 2021, 29: 458-467.
|