1. |
Modan M, Peles E, Halkin H, et al. Increased cardiovascular disease mortality rates in traumatic lower limb amputees. Am J Cardiol, 1998, 82(10): 1242-1247.
|
2. |
Hrubec Z, Ryder R A. Traumatic limb amputations and subsequent mortality from cardiovascular disease and other causes. J Chronic Dis, 1980, 33(4): 239-250.
|
3. |
Yekutiel M, Brooks M E, Ohry A, et al. The prevalence of hypertension, ischaemic heart disease and diabetes in traumatic spinal cord injured patients and amputees. Paraplegia, 1989, 27(1): 58-62.
|
4. |
Vollmar J F, Paes E, Pauschinger P, et al. Aortic aneurysms as late sequelae of above-knee amputation. Lancet, 1989, 334(8667): 834-835.
|
5. |
Frugoli B A, Guion W K, Joyner B A, et al. Cardiovascular disease risk factors in an amputee population. Medicine and Science in Sports and Exercise, 2000, 33(5): S266.
|
6. |
Peles E, Akselrod S, Goldstein D S, et al. Insulin resistance and autonomic function in traumatic lower limb amputees. Clin Auton Res, 1995, 5(5): 279-288.
|
7. |
Bhatnagar V, Richard E, Melcer T, et al. Retrospective study of cardiovascular disease risk factors among a cohort of combat veterans with lower limb amputation. Vasc Health Risk Manag, 2019, 15: 409-418.
|
8. |
Pohjolainen T, Alaranta H. Ten-year survival of finnish lower limb amputees. Prosthet Orthot Int, 1998, 22(1): 10-16.
|
9. |
Jones W S, Patel M R, Dai D, et al. High mortality risks after major lower extremity amputation in medicare patients with peripheral artery disease. Am Heart J, 2013, 165(5): 809-815, e1.
|
10. |
Nerem R M, Harrison D G, Taylor W R, et al. Hemodynamics and vascular endothelial biology. J Cardiovasc Pharmacol, 1993, 21: S6-10.
|
11. |
Samady H, Eshtehardi P, Mcdaniel M C, et al. Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation, 2011, 124(7): 779-788.
|
12. |
Xiao N, Alastruey J, Figueroa C A. A systematic comparison between 1-d and 3-d hemodynamics in compliant arterial models: a comparison of 1-d and 3-d hemodynamics in compliant arterial models. International Journal for Numerical Methods in Biomedical Engineering, 2014, 30(2): 204-231.
|
13. |
Betts J G, Young K A, Wise J A, et al. Blood flow, blood pressure, and resistance//Anatomy and Physiology. Houston, Texas: OpenStax, 2013, [2021-07-11]. https://openstax.org/books/anatomy-and-physiology/pages/20-2-blood-flow-blood-pressure-and-resistance.
|
14. |
Alastruey J, Parker K H, Peiro J, et al. Lumped parameter outflow models for 1-d blood flow simulations: effect on pulse waves and parameter estimation. Commun Comput Phys, 2008, 4(2): 317-336.
|
15. |
Xiao N, Humphrey J D, Figueroa C A. Multi-scale computational model of three-dimensional hemodynamics within a deformable full-body arterial network. J Comput Phys, 2013, 244: 22-40.
|
16. |
Williams L R, Leggett R W. Reference values for resting blood flow to organs of man. Clin Phys Physiol Meas, 1989, 10(3): 187-217.
|
17. |
Olufsen M S, Peskin C S, Kim W Y, et al. Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann Biomed Eng, 2000, 28(11): 1281-1299.
|
18. |
Stergiopulos N, Young D F, Rogge T R. Computer simulation of arterial flow with applications to arterial and aortic stenoses. J Biomech, 1992, 25(12): 1477-1488.
|
19. |
Paula-Ribeiro M, Garcia M M, Martinez D G, et al. Increased peripheral vascular resistance in male patients with traumatic lower limb amputation: one piece of the cardiovascular risk puzzle. Blood Press Monit, 2015, 20(6): 341-345.
|
20. |
Röcker L, Taenzer M, Drygas W K, et al. Effect of prolonged physical exercise on the fibrinolytic system. Eur J Appl Physiol Occup Physiol, 1990, 60(6): 478-481.
|
21. |
汪炎秋. 左冠状动脉分叉角对血流动力学特性的影响研究. 济南:山东大学, 2020.
|
22. |
Taylor C A, Hughes T J, Zarins C K. Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis. Ann Biomed Eng, 1998, 26(6): 975-987.
|
23. |
Nyboer J, Murray P, Sedensky J A. Blood-flow indices in amputee and control limbs by mutual electrical impedance plethysmography. Am Heart J, 1974, 87(6): 704-710.
|
24. |
Huonker M, Schmid A, Schmidt-Trucksass A, et al. Size and blood flow of central and peripheral arteries in highly trained able-bodied and disabled athletes. J Appl Physiol, 2003, 95(2): 685-691.
|
25. |
刘大为. 临床血流动力学. 北京: 人民卫生出版社, 2013:17-53, 130-140.
|
26. |
Laurent S, Boutouyrie P. The structural factor of hypertension: large and small artery alterations. Circ Res, 2015, 116(6): 1007-1021.
|
27. |
Naschitz J E, Lenger R. Why traumatic leg amputees are at increased risk for cardiovascular diseases. Qjm-Mon J Assoc Phys, 2008, 101(4): 251-259.
|
28. |
Hoshina K, Sho E, Sho M, et al. Wall shear stress and strain modulate experimental aneurysm cellularity. J Vasc Surg, 2003, 37(5): 1067-1074.
|
29. |
Solonen K A, Rinne H J, Viikeri M, et al. Late sequelae of amputation the health of finnish amputated war veterans. Ann Chir Gynaecol, 1965: 54.
|
30. |
姚泰. 人体生理学(下册) , 译. 第3版. 北京: 人民卫生出版社, 2001: 1273-1290.
|
31. |
Davies P F. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med, 2009, 6(1): 16-26.
|
32. |
Traub O, Berk B C. Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler Thromb Vasc Biol, 1998, 18(5): 677-685.
|
33. |
Chatzizisis Y S, Coskun A U, Jonas M, et al. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling. J Am Coll Cardiol, 2007, 49(25): 2379-2393.
|
34. |
Chiu J J, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev, 2011, 91(1): 327-387.
|
35. |
Guo Ziyi, Yan Zhiqiang, Bai Ling, et al. Flow shear stress affects macromolecular accumulation through modulation of internal elastic lamina fenestrae. Clin Biomech, 2008, 23: S104-S111.
|
36. |
Lehoux S, Castier Y, Tedgui A. Molecular mechanisms of the vascular responses to hemodynamic forces. J Intern Med, 2006, 259(4): 381-392.
|
37. |
Berk B C, Korshunov V A. Genetic determinants of vascular remodeling. Can J Cardiol, 2006, 22: 6B-11B.
|
38. |
Golledge J. Abdominal aortic aneurysm: update on pathogenesis and medical treatments. Nat Rev Cardiol, 2019, 16(4): 225-242.
|
39. |
Dua M M, Dalman R L. Hemodynamic influences on abdominal aortic aneurysm disease: application of biomechanics to aneurysm pathophysiology. Vascul Pharmacol, 2010, 53(1/2): 11-21.
|
40. |
Boussel L, Rayz V, Mcculloch C, et al. Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study. Stroke, 2008, 39(11): 2997-3002.
|
41. |
姜宗来, 齐颖新. 血管力学生物学. 上海: 上海交通大学出版社, 2017: 128.
|
42. |
Doyle B J, Callanan A, Burke P E, et al. Vessel asymmetry as an additional diagnostic tool in the assessment of abdominal aortic aneurysms. J Vasc Surg, 2009, 49(2): 443-454.
|
43. |
Drzisga D, Köppl T, Pohl U, et al. Numerical modeling of compensation mechanisms for peripheral arterial stenoses. Comput Biol Med, 2016, 70: 190-201.
|
44. |
Heil M, Schaper W. Influence of mechanical, cellular, and molecular factors on collateral artery growth. Circ Res, 2004, 95(5): 449-458.
|