1. |
Al-Masni M A, Kim D H, Kim T S. Multiple skin lesions diagnostics via integrated deep convolutional networks for segmentation and classification. Comput Methods Programs Biomed, 2020, 190: 105351.
|
2. |
Jaisakthi S, Mirunalini P, Aravindan C. Automated skin lesion segmentation of dermoscopic images using GrabCut and k-means algorithms. IET Comput Vis, 2018, 12(8): 1088-1095.
|
3. |
蒋新辉, 李喆. 基于U型结构上下文编码解码网络的皮肤病变分割研究. 激光与光电子学进展, 2021, 58(12): 122-129.
|
4. |
Hasan M, Roy S, Mondal C, et al. Dermo-DOCTOR: a framework for concurrent skin lesion detection and recognition using a deep convolutional neural network with end-to-end dual encoders. Biomedical Signal Processing and Control, 2021, 68: 102661.
|
5. |
杨国亮, 赖振东, 喻丁玲. 一种改进UNet++网络用于检测黑色素瘤皮肤病变. 中国医学影像技术, 2020, 36(12): 1877-1881.
|
6. |
Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell, 2017, 39(12): 2481-2495.
|
7. |
易三莉, 王天伟, 杨雪莲, 等. 基于改进U-Net的肺野分割算法. 激光与光电子学进展, 2022, 59(2): 175-183.
|
8. |
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. IEEE T Pattern Anal. 2015, 39(4): 640-651.
|
9. |
Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston: IEEE, 2015: 1-9.
|
10. |
Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation// 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). Munich: Springer, 2015: 234-241.
|
11. |
Valanarasu J M J, Oza P, Hacihalilu I, et al. Medical transformer: gated axial-attention for medical image segmentation// Medical Image Computing and Computer Assisted Intervention (MICCAI 2021), Strasbourg: MICCAI, 2021. https://doi.org/10.48550/arXiv.2102.10662.
|
12. |
Schlemper J, Oktay O, Schaap M, et al. Attention gated networks: learning to leverage salient regions in medical images. Med Image Anal, 2019, 53: 197-207.
|
13. |
Oktay O, Schlemper J, Folgoc L, et al. Attention U-Net: learning where to look for the pancreas// Medical Imaging with Deep Learning (MIDL). Amsterdam: Academic Press. 2018. https: //doi.org/10.48550/arXiv.1804.03999.
|
14. |
Thomas E, Pawan SJ, Kumar S, et al. Multi-Res-Attention UNet: A CNN Model for the Segmentation of Focal Cortical Dysplasia Lesions from Magnetic Resonance Images. IEEE J Biomed Health Inform, 2021, 25(5): 1724-1734.
|
15. |
Chen L, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation// Proceedings of the European Conference on Computer Vision (ECCV). Munich: Springer. 2018: 801-818.
|
16. |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas: IEEE, 2016: 770–778.
|
17. |
Ibtehaz N, Rahman MS. MultiResUNet : rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Netw, 2020, 121: 74-87.
|
18. |
Qin Zequn, Zhang Pengyi, Wu Fei, et al. FcaNet: frequency channel attention networks// 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal: IEEE, 2021: 763-772.
|
19. |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need// 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach: NIPS, 2017: 6000-6010.
|
20. |
Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16×16 words: transformers for image recognition at scale// International Conference on Learning Representations (ICLR 2022), 2021: 2010.11929v2. https: //doi.org/10.48550/arXiv.2010.11929.
|
21. |
Hu Jie, Shen Li, Albanie S, et al. Squeeze-and-excitation networks. IEEE Trans Pattern Anal Mach Intell, 2020, 42(8): 2011-2023.
|
22. |
Zhou Z, Siddiquee M, Tajbakhsh N, et al. UNet++: a nested U-Net architecture for medical image segmentation// 2018 International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). Granada: Springer, 2018, 11045:3–11.
|
23. |
Wang Haonan, Cao Peng, Wang Jiaqi, et al. UCTransNet: rethinking the skip connections in U-Net from a channel-wise perspective with transformer// AAAI Conference on Artificial Intelligence (AAAI 2022), AAAI, 2022. https://doi.org/10.48550/arXiv.2109.04335.
|
24. |
Wang J, Wei L, Wang L, et al. Boundary-aware transformers for skin lesion segmentation// 2018 International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Strasbourg: Springer, 2021: 206-216.
|
25. |
Gu Z, Cheng J, Fu H, et al. CE-Net: context encoder network for 2D medical image segmentation. IEEE Trans Med Imaging, 2019, 38(10): 2281-2292.
|
26. |
Lee H, Kim J, Lee S, et al. Structure boundary preserving segmentation for medical image with ambiguous boundary// 2020 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle: IEEE, 2020: 4816–4825.
|