1. |
Islam R, Islam M S, Uddin M S. Compressed sensing in parallel MRI: a review. International Journal of Image and Graphics, 2021, 22(4): 2250038.
|
2. |
Delattre B M A, Boudabbous S, Hansen C, et al. Compressed sensing MRI of different organs: ready for clinical daily practice?. Eur Radiol, 2020, 30(1): 308-319.
|
3. |
Goodfellow I, Pouget-abadie J, Mirza M, et al. Generative adversarial nets//The 27th International Conference on Neural Information Processing Systems, 2014, 2: 2672-2680.
|
4. |
Yi X, Walia E, Babyn P. Generative adversarial network in medical imaging: a review. Medical Image Analysis, 2019, 58: 101552.
|
5. |
Kazeminia S, Baur C, Kuijper A, et al. GANs for medical image analysis. Artificial Intelligence in Medicine, 2020, 109: 101938.
|
6. |
Deora P, Vasudeva B, Bhattacharya S, et al. Structure preserving compressive sensing MRI reconstruction using generative adversarial networks//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle: ICCVW, 2020: 2211-2219.
|
7. |
Zhang A, Su L, Zhang Y, et al. EEG data augmentation for emotion recognition with a multiple generator conditional Wasserstein GAN. Complex & Intelligent Systems, 2022, 8: 3059-3071.
|
8. |
Liu Xiaofeng, Xing Fangxu, Jerry L, Dual-cycle constrained bijective VAE-GAN for tagged-to-cine magnetic resonance image synthesis//2021 IEEE 18th International Symposium on Biomedical Imaging, New York: IEEE, 2021: 1448-1452.
|
9. |
Lv J, Zhu J, Yang G. Which GAN? A comparative study of generative adversarial network-based fast MRI reconstruction. Philos Trans A Math Phys Eng Sci, 2021, 379(2200): 20200203.
|
10. |
Yang G, Yu S, Dong H, et al. DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Trans Med Imaging, 2018, 37(6): 1310-1321.
|
11. |
Yuan Z, Jiang M, Wang Y, et al. SARA-GAN: self-attention and relative average discriminator based generative adversarial networks for fast compressed sensing MRI reconstruction. Frontiers in Neuro informatics, 2020, 14: 611666.
|
12. |
Shaul R, David I, Shitrit O, et al. Subsampled brain MRI reconstruction by generative adversarial neural networks. Medical Image Analysis, 2020, 65(4): 101747.
|
13. |
Li Y, Li J, Ma F, et al. High quality and fast compressed sensing MRI reconstruction via edge-enhanced dual discriminator generative adversarial network. Magnetic Resonance Imaging, 2021, 77: 124-136.
|
14. |
Huang J, Ding W, Lv J, et al. Edge-enhanced dual discriminator generative adversarial network for fast MRI with parallel imaging using multi-view information. Applied Intelligence, 2022, 52(13): 14693-14710.
|
15. |
Li G, Lyu J, Wang C, et al. WavTrans: synergizing wavelet and cross-attention transformer for multi-contrast MRI super-resolution//Medical Image Computing and Computer Assisted Intervention (MICCAI 2022), Xiamen: Springer, 2022: 463–473.
|
16. |
Huang J, Wu Y, Wu H, et al. Fast MRI reconstruction: how powerful transformers are?. Annu Int Conf IEEE Eng Med Biol Soc, 2022, 2022: 2066-2070.
|
17. |
Cole E K, Ong F, Vasanawala S S, et al. Fast unsupervised MRI reconstruction without fully-sampled ground truth data using generative adversarial networks//2021 IEEE/CVF International Conference on Computer Vision Workshops, Montreal: ICCVW, 2021: 3971-3980.
|
18. |
Oh G, Sim B, Chung H, et al. Unpaired deep learning for accelerated MRI using optimal transport driven cycleGAN. IEEE Transactions on Computational Imaging, 2020, 6: 1285-1296.
|
19. |
Li G, Lv J, Wang C. A modified generative adversarial network using spatial and channel-wise attention for CS-MRI reconstruction. IEEE Access, 2021, 9: 83185-83198.
|
20. |
Belov A, Stadelmann J, Kastryulin S, et al. Towards ultrafast MRI via extreme k-space under sampling and super resolution//Medical Image Computing and Computer Assisted Intervention, Strasbourg: Springer, 2021: 254-264.
|
21. |
Lv J, Wang P, Tong X, et al. Parallel imaging with a combination of sensitivity encoding and generative adversarial networks. Quant Imaging Med Surg, 2020, 10(12): 2260-2273.
|
22. |
Lv J, Wang C, Yang G. PIC-GAN: a parallel imaging coupled generative adversarial network for accelerated multi-channel MRI reconstruction. Diagnostics, 2021, 11(1): 61.
|
23. |
Lv J, Li G, Tong X, et al. Transfer learning enhanced generative adversarial networks for multi-channel MRI reconstruction. Computers in Biology and Medicine, 2021, 134: 104504.
|
24. |
Edupuganti V, Mardani M, Vasanawala S, et al. Uncertainty quantification in deep MRI reconstruction. IEEE Transactions on Medical Imaging, 2021, 40(1): 239-250.
|
25. |
Sun L, Fan Z, Fu X, et al. A deep information sharing network for multi-contrast compressed sensing MRI reconstruction. IEEE Trans Image Process, 2019, 28(12): 6141-6153.
|
26. |
Liu X, Wang J, Lin S, ed al. Optimizing multi contrast MRI reconstruction with shareable feature aggregation and selection. NMR Biomed, 2021, 34(8): e4540.
|
27. |
Liu X, Wang J, Sun H, et al. On the regularization of feature fusion and mapping for fast MR multi-contrast imaging via iterative networks. Magn Reson Imaging, 2021, 77: 159-168.
|
28. |
Kim K H, Do W J, Park S H. Improving resolution of MR images with an adversarial network incorporating images with different contrast. Medical Physics, 2018, 45(7): 3120-3131.
|
29. |
Xiang L, Chen Y, Chang W T, et al. Deep-learning-based multi-modal fusion for fast MR reconstruction. IEEE Transactions on Biomedical Engineering, 2019, 66(7): 2105-2114.
|
30. |
Do W, Seo S, Han Y, et al. Reconstruction of multi-contrast MR images through deep learning. Medical Physics, 2020, 47(3): 983-997.
|
31. |
Dar S U, Yurt M, Shahdloo M, et al. Prior-guided image reconstruction for accelerated multi-contrast MRI via generative adversarial networks. IEEE Journal of Selected Topics in Signal Processing, 2020, 14(6): 1072-1087.
|
32. |
楼鑫杰. 基于深度学习与多模态融合的快速MRI重建研究. 杭州: 浙江工业大学, 2021.
|