1. |
Gladilin E, Gonzalez P, Eils R. Dissecting the contribution of actin and vimentin intermediate filaments to mechanical phenotype of suspended cells using high-throughput deformability measurements and computational modeling. J Biomech, 2014, 47(11): 2598-2605.
|
2. |
Hamill O P, Martinac B. Molecular basis of mechanotransduction in living cells. Physiol Rev, 2001, 81(2): 685-740.
|
3. |
Seelbinder B, Scott A K, Nelson I, et al. TENSCell: imaging of stretch-activated cells reveals divergent nuclear behavior and tension. Biophys J, 2020, 118(11): 2627-2640.
|
4. |
Cheng J, Zou Q, Xue Y, et al. Mechanical stretch promotes antioxidant responses and cardiomyogenic differentiation in P19 cells. J Tissue Eng Regen Med, 2021, 15(5): 453-462.
|
5. |
Duncan R L, Turner C H. Mechanotransduction and the functional response of bone to mechanical strain. Calcif Tissue Int, 1995, 57(5): 344-358.
|
6. |
Gao J, Fu S, Zeng Z, et al. Cyclic stretch promotes osteogenesis-related gene expression in osteoblast-like cells through a cofilin-associated mechanism. Mol Med Rep, 2016, 14(1): 218-224.
|
7. |
Beloussov L V, Saveliev S V, Naumidi I I, et al. Mechanical stresses in embryonic tissues: patterns, morphogenetic role, and involvement in regulatory feedback. Int Rev Cytol, 1994, 150: 1-34.
|
8. |
Simpson D G, Carver W, Borg T K, et al. Role of mechanical stimulation in the establishment and maintenance of muscle cell differentiation. Int Rev Cytol, 1994, 150: 69-94.
|
9. |
Pfister B J, Grasman J M, Loverde J R. Exploiting biomechanics to direct the formation of nervous tissue. Curr Opin Biomed Eng, 2020, 14(1): 59-66.
|
10. |
Brown T D. Techniques for mechanical stimulation of cells in vitro: a review. J Biomech, 2000, 33(1): 3-14.
|
11. |
Chen J H, Liu C, You L, et al. Boning up on Wolff's law: mechanical regulation of the cells that make and maintain bone. J Biomech, 2010, 43(1): 108-118.
|
12. |
Sears C, Kaunas R. The many ways adherent cells respond to applied stretch. J Biomech, 2016, 49(8): 1347-1354.
|
13. |
Meng L, Xue G, Liu Q, et al. In-situ electromechanical testing and loading system for dynamic cell-biomaterial interaction study. Biomed Microdevices, 2020, 22(3): 56.
|
14. |
Dai Z X, Shih P J, Yen J Y, et al. Functional assistance for stress distribution in cell culture membrane under periodically stretching. J Biomech, 2021, 125: 110564.
|
15. |
Zhang Chunqiu, Qiu Lulu, Gao Lilan, et al. A novel dual-frequency loading system for studying mechanobiology of load-bearing tissue. Mater Sci Eng C, 2016, 69: 262-267.
|
16. |
Van Dyke W S, Sun X, Richard A B, et al. Novel mechanical bioreactor for concomitant fluid shear stress and substrate strain. J Biomech, 2012, 45(7): 1323-1327.
|
17. |
Bianchi F, George J H, Malboubi M, et al. Engineering a uniaxial substrate-stretching device for simultaneous electrophysiological measurements and imaging of strained peripheral neurons. Med Eng Phys, 2019, 67(1): 1-10.
|
18. |
Apa L, Carraro S, Pisu S, et al. Development and validation of a device for in vitro uniaxial cell substrate deformation with real-time strain control. Meas Sci Technol, 2020, 31: 125702.
|
19. |
Lei Y, Masjedi S, Ferdous Z. A study of extracellular matrix remodeling in aortic heart valves using a novel biaxial stretch bioreactor. J Mech Behav Biomed Mater, 2017, 75: 351-358.
|
20. |
Dermenoudis S, Missirlis Y. Design of a novel rotating wall bioreactor for the in vitro simulation of the mechanical environment of the endothelial function. J Biomech, 2010, 43(7): 1426-1431.
|
21. |
Toume S, Gefen A, Weihs D. Printable low-cost, sustained and dynamic cell stretching apparatus. J Biomech, 2016, 49(8): 1336-1339.
|
22. |
Tsukamoto S, Asakawa T, Kimura S, et al. Intranuclear strain in living cells subjected to substrate stretching: A combined experimental and computational study. J Biomech, 2021, 119: 110292.
|
23. |
Morita Y, Watanabe S, Ju Y, et al. In vitro experimental study for the determination of cellular axial strain threshold and preferential axial strain from cell orientation behavior in a non-uniform deformation field. Cell Biochem Biophys, 2013, 67(3): 1249-1259.
|
24. |
Bieler F H, Ott C E, Thompson M S, et al. Biaxial cell stimulation: A mechanical validation. J Biomech, 2009, 42(11): 1692-1696.
|
25. |
Gu Xiaojun, Cao Yinfeng, Zhu Jihong, et al. Shape optimization of SMA structures with respect to fatigue. Mater Design, 2020, 189: 108456.
|
26. |
Upadhyay B D, Sonigra S S, Daxini S D. Numerical analysis perspective in structural shape optimization: A review post 2000. Adv Eng Softw, 2021, 155: 102992.
|
27. |
郭新路, 刘蓉, 王永轩. 仿骨小梁力学性能的多孔结构拓扑优化设计. 医用生物力学, 2018, 33(5): 402-409.
|
28. |
邱璐璐, 宋阳, 李可, 等. 数字图像相关技术在生物力学方面的研究进展. 生物医学工程与临床, 2017, 21(6): 676-681.
|
29. |
Gilbert J A, Weinhold P S, Banes A J, et al. Strain profiles for circular cell culture plates containing flexible surfaces employed to mechanically deform cells in vitro. J Biomech, 1994, 27(9): 1169-1177.
|
30. |
Albiges-Rizo C, Destaing O, Fourcade B, et al. Actin machinery and mechanosensitivity in invadopodia, podosomes and focal adhesions. J Cell Sci, 2009, 122(17): 3037-3049.
|
31. |
Gasparski A N, Ozarkar S, Beningo K A. Transient mechanical strain promotes the maturation of invadopodia and enhances cancer cell invasion in vitro. J Cell Sci, 2017, 130(11): 1965-1978.
|