1. |
Abiri R, Borhani S, Sellers E W, et al. A comprehensive review of EEG-based brain–computer interface paradigms. J Neural Eng, 2019, 16(1): 011001.
|
2. |
Branco M P, Pels E G M, Nijboer F, et al. Brain-Computer interfaces for communication: preferences of individuals with locked-in syndrome, caregivers and researchers. Disabil Rehabil Assist Technol, 2021: 1-11.
|
3. |
Xu Minpeng, He Feng, Jung T P, et al. Current challenges for the practical application of electroencephalography-based Brain-Computer Interfaces. Engineering, 2021, 7(12): 1710-1712.
|
4. |
Han C, Xu G, Xie J, et al. Highly interactive brain computer interface based on flicker-free steady-state motion visual evoked potential. Sci Rep, 2018, 8(1): 1-13.
|
5. |
Wang M, Li R, Zhang R, et al. A wearable SSVEP-based BCI system for quadcopter control using head-mounted device. IEEE Access, 2018, 6: 26789-26798.
|
6. |
Zhang X, Hui L, Wei L, et al. A bibliometric analysis of human-machine interaction methodology for electric-powered wheelchairs driving from 1998 to 2020. Int J Public Health, 2021, 18(14): 7567.
|
7. |
戴廷飞, 刘邈, 叶阳阳, 等. 人机共享控制机器人系统的应用与发展. 仪器仪表学报, 2019, 40(3): 62-73.
|
8. |
Pan J, Xie Q, Qin P, et al. Prognosis for patients with cognitive motor dissociation identified by brain-computer interface. Brain, 2020, 143(4): 1177-1189.
|
9. |
Chamola V, Vineet A, Nayyar A, et al. Brain-computer interface-based humanoid control: A review. Sensors, 2020, 20(13): 3620.
|
10. |
Oralhan Z. A new paradigm for region-based P300 speller in brain computer interface. IEEE Access, 2019, 7: 106618-106627.
|
11. |
Ratib S. A smart brain controlled wheelchair based microcontroller system. Int J Artif Intell Appl, 2019, 10(5): 67-85.
|
12. |
Tang J, Liu Y, Hu D, et al. Towards BCI-actuated smart wheelchair system. Biomed Eng Online, 2018, 17(1): 1-22.
|
13. |
Jeong J H, Shim K H, Kim D J, et al. Brain-controlled robotic arm system based on multi-directional CNN-BiLSTM network using EEG signals. IEEE Trans Neural Syst Rehabil Eng, 2020, 28(5): 1226-1238.
|
14. |
Aggarwal S, Chugh N. Signal processing techniques for motor imagery brain computer interface: A review. Array, 2019, 1: 100003.
|
15. |
Papanastasiou G P, Drigas A, Lytras M, et al. Brain computer interface based applications for training and rehabilitation of students with neurodevelopmental disorders. A literature review. Heliyon, 2020, 6(6): e04250.
|
16. |
Wang X, Lu H, Shen X, et al. Prosthetic control system based on motor imagery. Comput Methods Biomech Biomed Engin, 2022, 25(7): 764-771.
|
17. |
Duan X, Xie S, Xie X, et al. Quadcopter flight control using a non-invasive multi-modal brain computer interface. Front Neurorobot, 2019, 13: 23.
|
18. |
Xu Minpeng, Han Jin, Wang Yijun, et al. Implementing over 100 command codes for a high-speed hybrid Brain-Computer Interface using concurrent P300 and SSVEP features. IEEE Trans Biomed Eng, 2020, 67(11): 3073-3082.
|
19. |
Deng X, Yu Z L, Lin C, et al. Self-adaptive shared control with brain state evaluation network for human-wheelchair cooperation. J Neural Eng, 2020, 17(4): 045005.
|
20. |
Zheng W, Liu Q, Cen K, et al. Brain-robot shared control based on motor imagery and improved Bayes filter// 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). Hong Kong: IEEE, 2019: 139-144.
|
21. |
Xu M, Xiao X, Wang Y, et al. A brain–computer interface based on miniature-event-related potentials induced by very small lateral visual stimuli. IEEE Trans Biomed Eng, 2018, 65(5): 1166-1175.
|
22. |
Wang K, Xu M, Wang Y, et al. Enhance decoding of pre-movement EEG patterns for brain–computer interfaces. J Neural Eng, 2020, 17(1): 016033.
|
23. |
Meng J, Xu M, Wang K, et al. Separable EEG features induced by timing prediction for active brain-computer interfaces. Sensors, 2020, 20(12): 3588.
|
24. |
Jin J, Fang H, Daly I, et al. Optimization of model training based on iterative minimum covariance determinant in motor-imagery BCI. Int J Neural Syst, 2021, 31(07): 2150030.
|
25. |
Jeong J H, Kwak N S, Guan C, et al. Decoding movement-related cortical potentials based on subject-dependent and section-wise spectral filtering. IEEE Trans Neural Syst Rehabil Eng, 2020, 28(3): 687-698.
|
26. |
Mishuhina V, Jiang X. Feature weighting and regularization of common spatial patterns in EEG-based motor imagery BCI. IEEE Signal Process Lett, 2018, 25(6): 783-787.
|
27. |
Deng Y, Li Z, Wang H, et al. Local temporal joint recurrence common spatial patterns for MI-based BCI// 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). Chongqing: IEEE, 2020, 1: 813-816.
|
28. |
Yu Z, Ma T, Fang N, et al. Local temporal common spatial patterns modulated with phase locking value. Biomed Signal Process Control, 2020, 59: 101882.
|
29. |
Nakanishi M, Wang Y, Chen X, et al. Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis. IEEE Trans Biomed Eng, 2017, 65(1): 104-112.
|
30. |
Zhang Z, Huang Y, Chen S, et al. An intention-driven semi-autonomous intelligent robotic system for drinking. Front Neurorobot, 2017, 11: 48.
|
31. |
Abdulkarim H, Al-Faiz M Z. Brain-controlled wheeled chair path planning for indoor environments. Int J Simul Syst Sci Technol, 2021, 22(1): 10.2.
|
32. |
Xu Y, Ding C, Shu X, et al. Shared control of a robotic arm using non-invasive brain–computer interface and computer vision guidance. Rob Auton Syst, 2019, 115: 121-129.
|
33. |
Tang J, Zhou Z. A shared-control based BCI system: for a robotic arm control// 2017 First International Conference on Electronics Instrumentation & Information Systems (EIIS). Harbin: IEEE, 2017: 1-5.
|
34. |
Zhang W, Sun F, Wu H, et al. Asynchronous brain-computer interface shared control of robotic grasping. Tsinghua Sci Technol, 2019, 24(3): 360-370.
|
35. |
Yang C, Wu H, Li Z, et al. Mind control of a robotic arm with visual fusion technology. IEEE Trans Industr Inform, 2017, 14(9): 3822-3830.
|
36. |
Schiatti L, Tessadori J, Deshpande N, et al. Human in the loop of robot learning: EEG-based rewardsignal for target identification and reaching task// 2018 IEEE International Conference on Robotics and Automation (ICRA). Brisbane: IEEE, 2018: 4473-4480.
|
37. |
张腾, 张小栋, 张英杰, 等. 引入深度强化学习思想的脑-机协作精密操控方法. 西安交通大学学报, 2021, 55(2): 1-9.
|
38. |
Batzianoulis I, Iwane F, Wei S, et al. Customizing skills for assistive robotic manipulators, an inverse reinforcement learning approach with error-related potentials. Commun Biol, 2021, 4(1): 1-14.
|
39. |
Kar R, Ghosh L, Konar A, et al. EEG-induced autonomous game-teaching to a robot arm by human trainers using reinforcement learning. IEEE Trans Games, 2021: 1. DOI: 10.1109/TG.2021.3124340.
|
40. |
Zhang D W, Meng S S, Deng J C. Research on formation control and cooperative collision avoidance of multi-mobile micro-miniature robots. J Instrum, 2017, 38(3): 578-585.
|
41. |
Petit D, Gergondet P, Cherubini A, et al. An integrated framework for humanoid embodiment with a BCI// 2015 IEEE International Conference on Robotics and Automation (ICRA). Washington: IEEE, 2015: 2882-2887.
|
42. |
Cao L, Li G, Xu Y, et al. A brain-actuated robotic arm system using non-invasive hybrid brain–computer interface and shared control strategy. J Neural Eng, 2021, 18(4): 046045.
|
43. |
Zhang R, Li Y, Yan Y, et al. Control of a wheelchair in an indoor environment based on a brain–computer interface and automated navigation. IEEE Trans Neural Syst Rehabil Eng, 2015, 24(1): 128-139.
|
44. |
Schröer S, Killmann I, Frank B, et al. An autonomous robotic assistant for drinking// 2015 IEEE International Conference on Robotics and AUTomation (ICRA). Washington: IEEE, 2015: 6482-6487.
|
45. |
Dai W, Liu Y, Lu H, et al. A shared control framework for human-multirobot foraging with brain-computer interface. IEEE Robot Autom Lett, 2021, 6(4): 6305-6312.
|
46. |
Haddix C, Al-Bakri A F, Sunderam S. Prediction of isometric handgrip force from graded event-related desynchronization of the sensorimotor rhythm. J Neural Eng, 2021, 18(5): 056033.
|
47. |
Han J, Xu M, Wang Y, et al. ‘Write’ but not ‘spell’ Chinese characters with a BCI-controlled robot// 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). Montreal: IEEE, 2020: 4741-4744.
|
48. |
Lopes A C, Nunes U, Vaz L, et al. Assisted navigation based on shared-control, using discrete and sparse human-machine interfaces// 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology (EMBC). Buenos Aires: IEEE, 2010: 471-474.
|
49. |
Na R, Zheng D, Sun Y, et al. A wearable low-power collaborative sensing system for high-quality SSVEP-BCI signal acquisition. IEEE Internet Things J, 2021, 9(10): 7273-7285.
|