1. |
Zhou P, Yang X L, Wang X G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798): 270-273.
|
2. |
Samrat S K, Tharappel A M, Li Z, et al. Prospect of SARS-CoV-2 spike protein: potential role in vaccine and therapeutic development. Virus Res, 2020, 288: 198141.
|
3. |
Creech C B, Walker S C, Samuels R J. SARS-CoV-2 vaccines. JAMA, 2021, 325(13): 1318-1320.
|
4. |
Weinreich D M, Sivapalasingam S, Norton T, et al. REGN-COV2, a neutralizing antibody cocktail, in outpatients with Covid-19. N Engl J Med, 2021, 384(3): 238-251.
|
5. |
Wrapp D, Wang N, Corbett K S, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 2020, 367(6483): 1260-1263.
|
6. |
Walls A C, Park Y J, Tortorici M A, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 2020, 181(2): 281-292.
|
7. |
Yan R, Zhang Y, Li Y, et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science, 2020, 367(6485): 1444-1448.
|
8. |
Jarząb A, Skowicki M, Witkowska D. Subunit vaccines–antigens, carriers, conjugation methods and the role of adjuvants. Postepy Hig Med Dosw, 2013, 67: 1128-1143.
|
9. |
杨利敏, 田德雨, 刘文军. 新型冠状病毒疫苗研究策略分析. 生物工程学报, 2020, 36(4): 593-604.
|
10. |
Yan R, Zhang Y, Li Y, et al. Structural basis for the different states of the spike protein of SARS-CoV-2 in complex with ACE2. Cell Res, 2021, 31(6): 717-719.
|
11. |
Black M, Trent A, Tirrell M, et al. Advances in the design and delivery of peptide subunit vaccines with a focus on toll-like receptor agonists. Expert Rev Vaccines, 2010, 9(2): 157-173.
|
12. |
Pallesen J, Wang N, Corbett K S, et al. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proc Natl Acad Sci U S A, 2017, 114(35): E7348-E7357.
|
13. |
Hsieh S M, Liu M C, Chen Y H, et al. Safety and immunogenicity of CpG 1018 and aluminium hydroxide-adjuvanted SARS-CoV-2 S-2P protein vaccine MVC-COV1901: interim results of a large-scale, double-blind, randomised, placebo-controlled phase 2 trial in Taiwan. Lancet Respir Med, 2021, 9(12): 1396-1406.
|
14. |
Dai L, Gao L, Tao L, et al. Efficacy and safety of the RBD-dimer-based Covid-19 vaccine ZF2001 in adults. N Engl J Med, 2022, 386(22): 2097-2111.
|
15. |
Robert-Guroff M. Replicating and non-replicating viral vectors for vaccine development. Curr Opin Biotechnol, 2007, 18(6): 546-556.
|
16. |
Zhu F C, Li Y H, Guan X H, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet, 2020, 395(10240): 1845-1854.
|
17. |
Voysey M, Clemens S A C, Madhi S A, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet, 2021, 397(10269): 99-111.
|
18. |
Folegatti P M, Ewer K J, Aley P K, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet, 2020, 396(10249): 467-478.
|
19. |
Fomsgaard A, Liu M A. The key role of nucleic acid vaccines for one health. Viruses, 2021, 13(2): 258.
|
20. |
Khobragade A, Bhate S, Ramaiah V, et al. Efficacy, safety, and immunogenicity of the DNA SARS-CoV-2 vaccine (ZyCoV-D): the interim efficacy results of a phase 3, randomised, double-blind, placebo-controlled study in India. Lancet, 2022, 399(10332): 1313-1321.
|
21. |
Ura T, Yamashita A, Mizuki N, et al. New vaccine production platforms used in developing SARS-CoV-2 vaccine candidates. Vaccine, 2021, 39(2): 197-201.
|
22. |
Baden L R, El Sahly H M, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med, 2021, 384(5): 403-416.
|
23. |
Li J, Hui A, Zhang X, et al. Safety and immunogenicity of the SARS-CoV-2 BNT162b1 mRNA vaccine in younger and older Chinese adults: a randomized, placebo-controlled, double-blind phase 1 study. Nat Med, 2021, 27(6): 1062-1070.
|
24. |
Brito L A, Kommareddy S, Maione D, et al. Self-amplifying mRNA vaccines. Adv Genet, 2015, 89: 179-233.
|
25. |
Ndeupen S, Qin Z, Jacobsen S, et al. The mRNA-LNP platform's lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory. iScience, 2021, 24(12): 103479.
|
26. |
史瑞, 严景华. 抗新型冠状病毒单克隆中和抗体药物研发进展. 中国生物工程杂志, 2021, 41(6): 129-135.
|
27. |
Li D, Sempowski G D, Saunders K O, et al. SARS-CoV-2 neutralizing antibodies for COVID-19 prevention and treatment. Annu Rev Med, 2022, 73: 1-16.
|
28. |
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2): 271-280.
|
29. |
Piccoli L, Park Y-J, Tortorici M A, et al. Mapping neutralizing and immunodominant sites on the SARS-CoV-2 Spike receptor-binding domain by structure-guided high-resolution serology. Cell, 2020, 183(4): 1024-1042.
|
30. |
Hansen J, Baum A, Pascal K E, et al. Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail. Science, 2020, 369(6506): 1010-1014.
|
31. |
Chen P, Nirula A, Heller B, et al. SARS-CoV-2 neutralizing antibody LY-CoV555 in outpatients with Covid-19. N Engl J Med, 2020, 384(3): 229-237.
|
32. |
马亦林. 抗2019-nCoV的单克隆抗体作用机制及其制剂研究进展. 中华临床感染病杂志, 2021, 14(2): 91-96.
|
33. |
Shi R, Shan C, Duan X, et al. A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature, 2020, 584(7819): 120-124.
|
34. |
Gottlieb R L, Nirula A, Chen P, et al. Effect of bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19: a randomized clinical trial. JAMA, 2021, 325(7): 632-644.
|
35. |
Ju B, Zhang Q, Ge J, et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature, 2020, 584(7819): 115-119.
|
36. |
Jones B E, Brown-Augsburger P L, Corbett K S, et al. The neutralizing antibody, LY-CoV555, protects against SARS-CoV-2 infection in nonhuman primates. Sci Transl Med, 2021, 13(593): eabf1906.
|
37. |
McCallum M, De Marco A, Lempp F A, et al. N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell, 2021, 184(9): 2332-2347.
|
38. |
Zost S J, Gilchuk P, Case J B, et al. Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature, 2020, 584(7821): 443-449.
|
39. |
Kim C, Ryu D K, Lee J, et al. A therapeutic neutralizing antibody targeting receptor binding domain of SARS-CoV-2 spike protein. Nat Commun, 2021, 12(1): 288.
|
40. |
梁红远, 周旭. 抗新型冠状病毒中和抗体研究进展. 国际生物制品学杂志, 2021, 44(1): 1-6.
|
41. |
Chi X, Yan R, Zhang J, et al. A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science, 2020, 369(6504): 650-655.
|
42. |
Suryadevara N, Shrihari S, Gilchuk P, et al. Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein. Cell, 2021, 184(9): 2316-2331.
|
43. |
Li D, Edwards R J, Manne K, et al. In vitro and in vivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell, 2021, 184(16): 4203-4219.
|
44. |
Jennewein M F, MacCamy A J, Akins N R, et al. Isolation and characterization of cross-neutralizing coronavirus antibodies from COVID-19 subjects. Cell Rep, 2021, 36(2): 109353.
|
45. |
Levin M J, Ustianowski A, De Wit S, et al. Intramuscular AZD7442 (tixagevimab-cilgavimab) for prevention of Covid-19. N Engl J Med, 2022, 386(23): 2188-2200.
|
46. |
Loo Y M, McTamney P M, Arends R H, et al. The SARS-CoV-2 monoclonal antibody combination, AZD7442, is protective in nonhuman primates and has an extended half-life in humans. Sci Transl Med, 2022, 14(635): eabl8124.
|
47. |
Cao Y, Wang J, Jian F, et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature, 2022, 602(7898): 657-663.
|