1. |
高金梅. 伤口分期治疗及辅料的使用. 甘肃科技, 2017, 33(17): 113-114.
|
2. |
中华医学会创伤学分会组织修复专业委员会(组). 慢性伤口诊疗指导意见(2011版)第4讲创伤性溃疡. 中国临床医生, 2011, 39(12): 55-57.
|
3. |
钟果玉, 谭惠仪, 叶雪梅, 等. 慢性伤口细菌生物膜管理的研究进展. 护理实践与研究, 2021, 18(12): 1790-1794.
|
4. |
Attinger C, Wolcott R. Clinically addressing biofilm in chronic wounds. Adv Wound Care (New Rochelle), 2012, 1(3): 127-132.
|
5. |
Zhao G, Usui M L, Lippman S I, et al. Biofilms and inflammation in chronic wounds. Adv Wound Care (New Rochelle), 2013, 2(7): 389-399.
|
6. |
Tejero-sarinena S, Barlow J, Costabile A, et al. In vitro evaluation of the antimicrobial activity of a range of probiotics against pathogens: evidence for the effects of organic acids. Anaerobe, 2012, 18(5): 530-538.
|
7. |
Rainer B M, Thompson K G, Antonescu C, et al. Characterization and analysis of the skin microbiota in rosacea: a case-control study. Am J Clin Dermatol, 2020, 21(1): 139-147.
|
8. |
Zipperer A, Konnerth M C, Laux C, et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature, 2016, 535(7613): 511-516.
|
9. |
Xu H, Jeong H S, Lee H Y, et al. Assessment of cell surface properties and adhesion potential of selected probiotic strains. Lett Appl Microbiol, 2009, 49(4): 434-442.
|
10. |
Zakaria Gomaa E. Antimicrobial and anti-adhesive properties of biosurfactant produced by lactobacilli isolates, biofilm formation and aggregation ability. J Gen Appl Microbiol, 2013, 59(6): 425-436.
|
11. |
Živković M, Miljković M S, Ruas-Madiedo P, et al. EPS-SJ exopolisaccharide produced by the strain lactobacillus paracasei subsp. paracasei BGSJ2-8 is involved in adhesion to epithelial intestinal cells and decrease on E. coli association to Caco-2 cells. Front Microbiol, 2016, 7: 286.
|
12. |
Scheffold A, Bacher P, LeibundGut-Landmann S. T cell immunity to commensal fungi. Curr Opin Microbiol, 2020, 8: 116-123.
|
13. |
Claudel J P, Auffret N, Leccia M T, et al. Staphylococcus epidermidis: a potential new player in the physiopathology of acne?. Dermatology, 2019, 235(4): 287-294.
|
14. |
Sultana R, McBain A J, O'Neill C A. Strain-dependent augmentation of tight-junction barrier function in human primary epidermal keratinocytes by lactobacillus and bifidobacterium lysates. Appl Environ Microbiol, 2013, 79(16): 4887-4894.
|
15. |
Park Y J, Lee H K. The role of skin and orogenital microbiota in protective immunity and chronic immune-mediated inflammatory disease. Front Immunol, 2018, 8: 1955.
|
16. |
Fijan S, Frauwallner A, Langerholc T, et al. Efficacy of using probiotics with antagonistic activity against pathogens of wound infections: an integrative review of literature. Biomed Res Int, 2019, 2019: 7585486.
|
17. |
Rutherford S T, Bassler B L. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med, 2012, 2(11): a012427.
|
18. |
Ramos A N, Cabral M E, Noseda D, et al. Antipathogenic properties of lactobacillus plantarum on pseudomonas aeruginosa: the potential use of its supernatants in the treatment of infected chronic wounds. Wound Repair Regen, 2012, 20(4): 552-562.
|
19. |
Paharik A E, Parlet C P, Chung N, et al. Coagulase-negative staphylococcal strain prevents staphylococcus aureus colonization and skin infection by blocking quorum sensing. Cell Host Microbe, 2017, 22(6): 746-756.
|
20. |
Monnappa A K, Dwidar M, Seo J K, et al. Bdellovibrio bacteriovorus inhibits staphylococcus aureus biofilm formation and invasion into human epithelial cells. Sci Rep, 2014, 4: 3811.
|
21. |
Naseri S, Lepry W C, Nazhat S N. Bioactive glasses in wound healing: hope or hype?. J Mater Chem B, 2017, 5(31): 6167-6174.
|
22. |
Duan T, Du Y, Xing C, et al. Toll-like receptor signaling and its role in cell-mediated immunity. Front Immunol, 2022, 13: 812774.
|
23. |
Lai Y, Di Nardo A, Nakatsuji T, et al. Commensal bacteria regulate toll-like receptor 3-dependent inflammation after skin injury. Nat Med, 2009, 15(12): 1377-1382.
|
24. |
Kim C K, Karau M J, Greenwood-Quaintance K E, et al. Superantigen-producing staphylococcus aureus elicits systemic immune activation in a murine wound colonization model. Toxins (Basel), 2015, 7(12): 5308-5319.
|
25. |
Tsai W H, Chou C H, Huang T Y, et al. Heat-killed lactobacilli preparations promote healing in the experimental cutaneous wounds. Cells, 2021, 10(11): 3264.
|
26. |
Linehan J L, Harrison O J, Han S J, et al. Non-classical immunity controls microbiota impact on skin immunity and tissue repair. Cell, 2018, 172(4): 784-796.
|
27. |
Luqman A, Nega M, Nguyen M T, et al. SadA-expressing staphylococci in the human gut show increased cell adherence and internalization. Cell Rep, 2018, 22(2): 535-545.
|
28. |
Pullar C E, Isseroff R R. The beta 2-adrenergic receptor activates pro-migratory and pro-proliferative pathways in dermal fibroblasts via divergent mechanisms. J Cell Sci, 2006, 119(Pt 3): 592-602.
|
29. |
Luqman A, Muttaqin M Z, Yulaipi S, et al. Trace amines produced by skin bacteria accelerate wound healing in mice. Commun Biol, 2020, 3(1): 277.
|
30. |
Mohammedsaeed W, Cruickshank S, McBain A J, et al. Lactobacillus rhamnosus GG lysate increases re-epithelialization of keratinocyte scratch assays by promoting migration. Sci Rep, 2015, 5: 16147.
|
31. |
Poutahidis T, Kearney S M, Levkovich T, et al. Microbial symbionts accelerate wound healing via the neuropeptide hormone oxytocin. PLoS One, 2013, 8(10): e78898.
|
32. |
Varian B J, Poutahidis T, DiBenedictis B T, et al. Microbial lysate upregulates host oxytocin. Brain Behav Immun, 2017, 61: 36-49.
|
33. |
Alves E, Gregório J, Baby A R, et al. Homemade kefir consumption improves skin condition-a study conducted in healthy and atopic volunteers. Foods, 2021, 10(11): 2794.
|
34. |
Benyacoub J, Bosco N, Blanchard C, et al. Immune modulation property of lactobacillus paracasei NCC2461 (ST11) strain and impact on skin defences. Benef Microbes, 2014, 5(2): 129-136.
|
35. |
Erdman S E, Poutahidis T. Probiotic 'glow of health': it's more than skin deep. Benef Microbes, 2014, 5(2): 109-119.
|
36. |
Rooj A K, Kimura Y, Buddington R K. Metabolites produced by probiotic lactobacilli rapidly increase glucose uptake by Caco-2 cells. BMC Microbiol, 2010, 10: 16.
|
37. |
Jones M L, Martoni C J, Prakash S. Oral supplementation with probiotic L. reuteri NCIMB 30242 increases mean circulating 25-hydroxyvitamin D: a post hoc analysis of a randomized controlled trial. J Clin Endocrinol Metab, 2013, 98(7): 2944-2951.
|
38. |
De Angelis M, Bottacini F, Fosso B, et al. Lactobacillus rossiae, a vitamin B12 producer, represents a metabolically versatile species within the genus lactobacillus. PLoS One, 2014, 9(9): e107232.
|
39. |
Ming Z, Han L, Bao M, et al. Living bacterial hydrogels for accelerated infected wound healing. Adv Sci (Weinh), 2021, 8(24): e2102545.
|
40. |
潘杉, 张玉彬. 慢性伤口的益生菌疗法. 药物生物技术, 2020, 27(3): 281-285.
|
41. |
Peral M C, Rachid M M, Gobbato N M, et al. Interleukin-8 production by polymorphonuclear leukocytes from patients with chronic infected leg ulcers treated with lactobacillus plantarum. Clin Microbiol Infect, 2010, 16(3): 281-286.
|
42. |
Peral M C, Martinez M A, Valdez J C. Bacteriotherapy with lactobacillus plantarum in burns. Int Wound J, 2009, 6(1): 73-81.
|
43. |
Mohseni S, Bayani M, Bahmani F, et al. The beneficial effects of probiotic administration on wound healing and metabolic status in patients with diabetic foot ulcer: a randomized, double-blind, placebo-controlled trial. Diabetes Metab Res Rev, 2018, 34(3). DOI: 10. 1002/dmrr. 2970.
|
44. |
Kasatpibal N, Whitney J D, Saokaew S, et al. Effectiveness of probiotic, prebiotic, and synbiotic therapies in reducing postoperative complications: a systematic review and network meta-analysis. Clin Infect Dis, 2017, 64(suppl_2): S153-S160.
|