1. |
Vidal J J. Toward direct brain-computer communication. Annu Rev Biomed Eng, 1973, 2(1): 157-180.
|
2. |
Regan D. Evoked potentials and evoked magnetic fields in science and medicine. New York: Elsevier, 1989.
|
3. |
Saenz M, Buracas G T, Boynton G M. Global effects of feature-based attention in human visual cortex. Nat Neurosci, 2002, 5(7): 631-632.
|
4. |
McMillan G, Calhoun G, Middendorf M, et al. Direct brain interface utilizing self-regulation of steady-state visual evoked response (SSVER)//RESNA ‘95 Annual Conference. Vancouver: Proc, 1995: 693.
|
5. |
Middendorf M, McMillan G, Calhoun G, et al. Brain-computer interfaces based on the steady-state visual-evoked response. IEEE Trans Rehabil Eng, 2000, 8(2): 211-214.
|
6. |
Fisher R S, Harding G, Erba G, et al. Photic- and pattern-induced seizures: a review for the Epilepsy Foundation of America Working Group. Epilepsia, 2005, 46(9): 1426-1441.
|
7. |
Chen X, Zhao B, Wang Y, et al. Combination of high-frequency SSVEP-based BCI and computer vision for controlling a robotic arm. J Neural Eng, 2019, 16(2): 026012.
|
8. |
Volosyak I, Valbuena D, Lüth T, et al. BCI demographics II: how many (and what kinds of) people can use a high-frequency SSVEP BCI?. IEEE Trans Neural Syst Rehabil Eng, 2011, 19(3): 232-239.
|
9. |
Maye A, Zhang D, Engel A K. Utilizing retinotopic mapping for a multi-target SSVEP BCI with a single flicker frequency. IEEE Trans Neural Syst Rehabil Eng, 2017, 25(7): 1026-1036.
|
10. |
Chen J, Zhang D, Engel A K, et al. Application of a single-flicker online SSVEP BCI for spatial navigation. PLoS One, 2017, 12(5): e0178385.
|
11. |
Yue L, Xiao X, Xu M, et al. A brain-computer interface based on high-frequency steady-state asymmetric visual evoked potentials//2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). Montreal: IEEE, 2020: 3090-3093.
|
12. |
Wandell B A, Brewer A A, Dougherty R F. Visual field map clusters in human cortex. Philos Trans R Soc Lond B Biol Sci, 2005, 360(1456): 693-707.
|
13. |
Wang Z, Hu H, Chen X, et al. A novel SSVEP-based brain-computer interface using joint frequency and space modulation//IEEE INFOCOM 2020-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). Toronto: IEEE, 2020: 906-911.
|
14. |
Di Russo F, Pitzalis S, Aprile T, et al. Spatiotemporal analysis of the cortical sources of the steady‐state visual evoked potential. Hum Brain Mapp, 2007, 28(4): 323-334.
|
15. |
Vanegas M I, Blangero A, Kelly S P. Exploiting individual primary visual cortex geometry to boost steady state visual evoked potentials. J Neural Eng, 2013, 10(3): 036003.
|
16. |
Thaler L, Schütz A C, Goodale M A, et al. What is the best fixation target? The effect of target shape on stability of fixational eye movements. Vision Res, 2013, 76: 31-42.
|
17. |
Towle V L, Bolaños J, Suarez D, et al. The spatial location of EEG electrodes: locating the best-fitting sphere relative to cortical anatomy. Electroencephalogr Clin Neurophysiol, 1993, 86(1): 1-6.
|
18. |
Alotaiby T, El-Samie F E A, Alshebeili S A, et al. A review of channel selection algorithms for EEG signal processing. Eurasip J Adv Signal Process, 2015, 2015(1): 1-21.
|
19. |
Regan D. Electrical responses evoked from the human brain. Sci Am, 1979, 241(6): 134-149.
|
20. |
Nakanishi M, Wang Y, Chen X, et al. Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis. IEEE Trans Biomed Eng, 2018, 65(1): 104-112.
|
21. |
Müller-Putz G R, Scherer R, Brauneis C, et al. Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components. J Neural Eng, 2005, 2(4): 123-130.
|
22. |
Galloway N R. Human brain electrophysiology: evoked potentials and evoked magnetic fields in science and medicine. Br J Ophthalmol, 1990, 74(4): 255.
|
23. |
Chen X, Wang Y, Gao S, et al. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface. J Neural Eng, 2015, 12(4): 046008.
|
24. |
Bishop P O, Jeremy D, Lance J W. The optic nerve; properties of a central tract. J Physiol, 1953, 121(2): 415-432.
|
25. |
Zhang N, Liu Y, Yin E, et al. Retinotopic and topographic analyses with gaze restriction for steady-state visual evoked potentials. Sci Rep, 2019, 9(1): 4472.
|
26. |
Ming G, Wang Y, Pei W, et al. Characteristics of high-frequency SSVEPs evoked by visual stimuli at different polar angles//2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). Montreal: IEEE, 2020: 3031-3034.
|
27. |
Amunts K, Malikovic A, Mohlberg H, et al. Brodmann's areas 17 and 18 brought into stereotaxic space-where and how variable?. Neuroimage, 2000, 11(1): 66-84.
|
28. |
Wurtz R H, Kandel E R. Central visual pathways. Principles of neural science, 2000, 4: 523-545.
|
29. |
Vialatte F B, Maurice M, Dauwels J, et al. Steady-state visually evoked potentials: focus on essential paradigms and future perspectives. Prog Neurobiol, 2010, 90(4): 418-438.
|