1. |
Abeshouse A, Ahn J, Akbani R, et al. The molecular taxonomy of primary prostate cancer. Cell, 2015, 163(4): 1011-1025.
|
2. |
Housman G, Byler S, Heerboth S, et al. Drug resistance in cancer: an overview. Cancers, 2014, 6(3): 1769-1792.
|
3. |
Chou T C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev, 2006, 58(3): 621-681.
|
4. |
Bajorath J. Integration of virtual and high-throughput screening. Nat Rev Drug Discov, 2002, 1(11): 882-894.
|
5. |
Preuer K, Lewis R P I, Hochreiter S, et al. DeepSynergy: predicting anti-cancer drug synergy with deep learning. Bioinformatics, 2018, 34(9): 1538-1546.
|
6. |
O’neil J, Benita Y, Feldman I, et al. An unbiased oncology compound screen to identify novel combination strategies. Mol Cancer Ther, 2016, 15(6): 1155-1162.
|
7. |
Zhang T, Zhang L, Payne P R O, et al. Synergistic drug combination prediction by integrating multiomics data in deep learning models. Methods Mol Biol, 2021, 2194: 223-238.
|
8. |
陈希, 秦玉芳, 陈明, 等. 基于多输入神经网络的药物组合协同作用预测. 生物医学工程学杂志, 2020, 37(4): 676-682, 691.
|
9. |
Sun Z, Huang S, Jiang P, et al. DTF: deep tensor factorization for predicting anticancer drug synergy. Bioinformatics, 2020, 36(16): 4483-4489.
|
10. |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need// 31st Conference on Neural Information Processing Systems (NIPS 2017). Long Beach: NIPS, 2017: 6000-6010.
|
11. |
Schwaller P, Laino T, Gaudin T, et al. Molecular Transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS Cent Sci, 2019, 5(9): 1572-1583.
|
12. |
Wang S, Guo Y, Wang Y, et al. Smiles-Bert: Large scale unsupervised pre-training for molecular property prediction// BCB '19: Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. Niagara Falls: Association for Computing Machinery, 2019: 429-436.
|
13. |
Tetko I V, Karpov P, Van Deursen R, et al. State-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis. Nat Commun, 2020, 11(1): 5575.
|
14. |
Honda S, Shi S, Ueda H R. Smiles transformer: pre-trained molecular fingerprint for low data drug discovery. arXiv preprint arXiv, 2019: 1911.04738.
|
15. |
He J, You H, Sandstrm E, et al. Molecular optimization by capturing chemist's intuition using deep neural networks. J Cheminform, 2021, 13(1): 26.
|
16. |
Peters M E, Neumann M, Iyyer M, et al. Deep contextualized word representations// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. New Orleans: Association for Computational Linguistics, 2018: 2227-2237.
|
17. |
Devlin J, Chang M W, Lee K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv, 2018: 1810.04805.
|
18. |
Weininger D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci, 1988, 28(1): 31-36.
|
19. |
Liu Q, Xie L. TranSynergy: Mechanism-driven interpretable deep neural network for the synergistic prediction and pathway deconvolution of drug combinations. PLoS Comput Biol, 2021, 17(2): e1008653.
|
20. |
Di Veroli G Y, Fornari C, Wang D, et al. Combenefit: an interactive platform for the analysis and visualization of drug combinations. Bioinformatics, 2016, 32(18): 2866-2868.
|
21. |
Holbeck S L, Camalier R, Crowell J A, et al. The national cancer institute ALMANAC: a comprehensive screening resource for the detection of anticancer drug pairs with enhanced therapeutic activity. Cancer Res, 2017, 77(13): 3564-3576.
|
22. |
Landrum G. RDKit: A software suite for cheminformatics, computational chemistry, and predictive modeling. (2013) [2022-09-20]. http: //www.rdkit.org/RDKit_Overview.pdf.
|
23. |
Gaulton A, Hersey A, Nowotka M, et al. The ChEMBL database in 2017. Nucleic Acids Res, 2017, 45(D1): D945-D954.
|
24. |
Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: Machine learning in Python. J Mach Learn Res, 2011, 12: 2825-2830.
|
25. |
Hinselmann G, Rosenbaum L, Jahn A, et al. jCompoundMapper: An open source Java library and command-line tool for chemical fingerprints. J Cheminform, 2011, 3(1): 3.
|
26. |
Cao D S, Xu Q S, Hu Q N, et al. ChemoPy: freely available python package for computational biology and chemoinformatics. Bioinformatics, 2013, 29(8): 1092-1094.
|
27. |
Singh P K, Negi A, Gupta P K, et al. Toxicophore exploration as a screening technology for drug design and discovery: techniques, scope and limitations. Arch Toxicol, 2016, 90(8): 1785-1802.
|