1. |
Glyn-Jones S, Palmer A J, Agricola R, et al. Osteoarthritis. Lancet (London), 2015, 386(9991): 376-387.
|
2. |
Roseti L, Desando G, Cavallo C, et al. Articular cartilage regeneration in osteoarthritis. Cells, 2019, 8(11): 1305.
|
3. |
Buckwalter J A, Mankin H J. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect, 1998, 47: 487-504.
|
4. |
Varela-Eirin M, Louriro J, Fonseca E, et al. Cartilage regeneration and ageing: targeting cellular plasticity in osteoarthritis. Ageing Res Rev, 2018, 42: 56-71.
|
5. |
Hwang H S, Kim H A. Chondrocyte apoptosis in the pathogenesis of osteoarthritis. Int J Mol Sci, 2015, 16(11): 26035-26054.
|
6. |
Abramoff B, Caldrea F E. Osteoarthritis: pathology, diagnosis, and treatment options. Med Clin North Am, 2020, 104(2): 293-311.
|
7. |
Makris E A, Gomoll A H, Malizos K N, et al. Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol, 2015, 11(1): 21-34.
|
8. |
Ding N, Li E, Ouyang X, et al. The therapeutic potential of bone marrow mesenchymal stem cells for articular cartilage regeneration in osteoarthritis. Curr Stem Cell Res Ther, 2021, 16(7): 840-857.
|
9. |
Taghiyar L, Jahangir S, Khozaei R M, et al. Cartilage repair by mesenchymal stem cell-derived exosomes: preclinical and clinical trial update and perspectives. Adv Exp Med Biol, 2021, 1326: 73-93.
|
10. |
Fuloria S, Subramaniyan V, Dahiya R, et al. Mesenchymal stem cell-derived extracellular vesicles: regenerative potential and challenges. Biology, 2021, 10(3): 172.
|
11. |
Chang Y H, Wu K C, Liu H W, et al. Human umbilical cord-derived mesenchymal stem cells reduce monosodium iodoacetate-induced apoptosis in cartilage. Ci Ji Yi Xue Za Zhi, 2018, 30(2): 71-80.
|
12. |
Daish C, Blanchard R, Fox K, et al. The application of pulsed electromagnetic fields (PEMFs) for bone fracture repair: past and perspective findings. Ann Biomed Eng, 2018, 46(4): 525-542.
|
13. |
Zhu S, He H, Zhang C, et al. Effects of pulsed electromagnetic fields on postmenopausal osteoporosis. Bioelectromagnetics, 2017, 38(6): 406-424.
|
14. |
Yang X, He H, Ye W, et al. Effects of pulsed electromagnetic field therapy on pain, stiffness, physical function, and quality of life in patients with osteoarthritis: a systematic review and meta-analysis of randomized placebo-controlled trials. Phys Ther, 2020, 100(7): 1118-1131.
|
15. |
Ye W, Guo H, Yang X, et al. Pulsed electromagnetic field versus whole body vibration on cartilage and subchondral trabecular bone in mice with knee osteoarthritis. Bioelectromagnetics, 2020, 41(4): 298-307.
|
16. |
Yang X, He H, Gao Q, et al. Pulsed electromagnetic field improves subchondral bone microstructure in knee osteoarthritis rats through a Wnt/β-catenin signaling-associated mechanism. Bioelectromagnetics, 2018, 39(2): 89-97.
|
17. |
Yang X, He H, Zhou Y, et al. Pulsed electromagnetic field at different stages of knee osteoarthritis in rats induced by low-dose monosodium iodoacetate: effect on subchondral trabecular bone microarchitecture and cartilage degradation. Bioelectromagnetics, 2017, 38(3): 227-238.
|
18. |
Parate D, Kadir N D, Celik C, et al. Pulsed electromagnetic fields potentiate the paracrine function of mesenchymal stem cells for cartilage regeneration. Stem Cell Res Ther, 2020, 11(1): 46.
|
19. |
Yang X, Guo H, Ye W, et al. Pulsed electromagnetic field attenuates osteoarthritis progression in a murine destabilization-induced model through inhibition of TNF-α and IL-6 signaling. Cartilage, 2021, 13(2_suppl): 1665S-1675S.
|
20. |
Barnett R. Osteoarthritis. Lancet, 2018, 391(10134): 1985.
|
21. |
Xia B, Di C, Zhang J, et al. Osteoarthritis pathogenesis: a review of molecular mechanisms. Calcif Tissue Int, 2014, 95(6): 495-505.
|
22. |
Castrogiovanni P, Ravalli S, Musumeci G. Apoptosis and autophagy in the pathogenesis of osteoarthritis. J Invest Surg, 2020, 33(9): 874-885.
|
23. |
Uder C, Brückner S, Winkler S, et al. Mammalian MSC from selected species: features and applications. Cytometry A, 2018, 93(1): 32-49.
|
24. |
Song Y, Du H, Dai C, et al. Human adipose-derived mesenchymal stem cells for osteoarthritis: a pilot study with long-term follow-up and repeated injections. Regen Med, 2018, 13(3): 295-307.
|
25. |
Han S B, Seo I W, Shin Y S. Intra-articular injections of hyaluronic acid or steroids associated with better outcomes than platelet-rich plasma, adipose mesenchymal stromal cells, or placebo in knee osteoarthritis: a network meta-analysis. Arthroscopy, 2021, 37(1): 292-306.
|
26. |
Mancuso P, Raman S, Glynn A, et al. Mesenchymal stem cell therapy for osteoarthritis: the critical role of the cell secretome. Front Bioeng Biotechnol, 2019, 7: 9.
|
27. |
Phinney D G, Pittenger M F. Concise review: MSC-derived exosomes for cell-free therapy. Stem cells, 2017, 35(4): 851-868.
|
28. |
Toh W S, Lai R C, Zhang B, et al. MSC exosome works through a protein-based mechanism of action. Biochem Soc Trans, 2018, 46(4): 843-853.
|
29. |
Wechsler M E, Rao V V, Borelli A N, et al. Engineering the MSC secretome: a hydrogel focused approach. Adv Healthc Mater, 2021, 10(7): e2001948.
|
30. |
Feng K, Xie X, Yuan J, et al. Reversing the surface charge of MSC-derived small extracellular vesicles by εPL-PEG-DSPE for enhanced osteoarthritis treatment. J Extracell Vesicles, 2021, 10(13): e12160.
|
31. |
Ross C L, Ang D C, Almeida-Porada G. Targeting mesenchymal stromal cells/pericytes (MSCs) with pulsed electromagnetic field (PEMF) has the potential to treat rheumatoid arthritis. Front Immunol, 2019, 10: 266.
|
32. |
Gaynor J S, Hagberg S, Gurfein B T. Veterinary applications of pulsed electromagnetic field therapy. Res Vet Sci, 2018, 119: 1-8.
|
33. |
Androjna C, Yee C S, White C R, et al. A comparison of alendronate to varying magnitude PEMF in mitigating bone loss and altering bone remodeling in skeletally mature osteoporotic rats. Bone, 2021, 143: 115761.
|
34. |
Vadalà M, Morales-Medina J C, Vallelunga A, et al. Mechanisms and therapeutic effectiveness of pulsed electromagnetic field therapy in oncology. Cancer Med, 2016, 5(11): 3128-3139.
|
35. |
Ongaro A, Varani K, Masieri F F, et al. Electromagnetic fields (EMFs) and adenosine receptors modulate prostaglandin E(2) and cytokine release in human osteoarthritic synovial fibroblasts. J Cell Physiol, 2012, 227(6): 2461-2479.
|
36. |
Fitzsimmons R J, Gordon S L, Kronberg J, et al. A pulsing electric field (PEF) increases human chondrocyte proliferation through a transduction pathway involving nitric oxide signaling. J Orthop Res, 2008, 26(6): 854-869.
|
37. |
Stolberg-Stolberg J, Boettcher A, Sambale M, et al. Toll-like receptor 3 activation promotes joint degeneration in osteoarthritis. Cell Death Dis, 2022, 13(3): 224.
|
38. |
Belmokhtar C A, Hillion J, Ségal-Bendirdjian E. Staurosporine induces apoptosis through both caspase-dependent and caspase-independent mechanisms. Oncogene, 2001, 20(26): 3354-3362.
|
39. |
Bridgewater L C, Lefebvre V, de Crombrugghe B. Chondrocyte-specific enhancer elements in the Col11a2 gene resemble the Col2a1 tissue-specific enhancer. J Biol Chem, 1998, 273(24): 14998-15006.
|
40. |
Kiani C, Chen L, Wu Y J, et al. Structure and function of aggrecan. Cell Res, 2002, 12(1): 19-32.
|
41. |
Lian C, Wang X, Qiu X, et al. Collagen type II suppresses articular chondrocyte hypertrophy and osteoarthritis progression by promoting integrin β1-SMAD1 interaction. Bone Res, 2019, 7: 8.
|
42. |
Sun K, Luo J, Guo J, et al. The PI3K/AKT/mTOR signaling pathway in osteoarthritis: a narrative review. Osteoarthritis Cartilage, 2020, 28(4): 400-419.
|
43. |
Bao J, Chen Z, Xu L, et al. Rapamycin protects chondrocytes against IL-18-induced apoptosis and ameliorates rat osteoarthritis. Aging, 2020, 12(6): 5152-5167.
|
44. |
Zhang Y, Cai W, Han G, et al. Panax notoginseng saponins prevent senescence and inhibit apoptosis by regulating the PI3K-AKT-mTOR pathway in osteoarthritic chondrocytes. Int J Mol Med, 2020, 45(4): 1225-1236.
|
45. |
Han G, Zhang Y, Li H. The combination treatment of curcumin and probucol protects chondrocytes from TNF-α induced inflammation by enhancing autophagy and reducing apoptosis via the PI3K-Akt-mTOR pathway. Oxid Med Cell Longev, 2021, 2021: 5558066.
|
46. |
Sun L, Zheng W, Liu Q D, et al. Valproic acid protects chondrocytes from LPS-stimulated damage via regulating miR-302d-3p/ITGB4 axis and mediating the PI3K-AKT signaling pathway. Front Mol Biosci, 2021, 8: 633315.
|