1. |
Zaghi S, Acar M, Hultgren B, et al. Noninvasive brain stimulation with low-intensity electrical currents: putative mechanisms of action for direct and alternating current stimulation. Neuroscientist, 2010, 16(3): 285-307.
|
2. |
Helfrich R F, Schneider T R, Rach S, et al. Entrainment of brain oscillations by transcranial alternating current stimulation. Current Biology, 2014, 24(3): 333-339.
|
3. |
Nasr K, Haslacher D, Dayan E, et al. Breaking the boundaries of interacting with the human brain using adaptive closed-loop stimulation. Progress in Neurobiology, 2022, 216: 102311.
|
4. |
Krause M R, Zanos T P, Csorba B A, et al. Transcranial direct current stimulation facilitates associative learning and alters functional connectivity in the primate brain. Current Biology, 2017, 27(20): 3086-3096.
|
5. |
Bradley C, Nydam A S, Dux P E, et al. State-dependent effects of neural stimulation on brain function and cognition. Nature Reviews Neuroscience, 2022, 23(8): 459-475.
|
6. |
Voroslakos M, Takeuchi Y, Brinyiczki K, et al. Direct effects of transcranial electric stimulation on brain circuits in rats and humans. Nature Communications, 2018, 9(1): 483.
|
7. |
Louviot S, Tyvaert L, Maillard L G, et al. Transcranial electrical stimulation generates electric fields in deep human brain structures. Brain Stimulation, 2022, 15(1): 1-12.
|
8. |
White N E, Richards L M. Chapter 5-Nexalin and related forms of subcortical electrical stimulation. Rhythmic Stimulation Procedures in Neuromodulation. Academic Press, 2017: 131-157.
|
9. |
Grover S, Wen W, Viswanathan V, et al. Long-lasting, dissociable improvements in working memory and long-term memory in older adults with repetitive neuromodulation. Nature Neuroscience, 2022, 25(9): 1237-1246.
|
10. |
Grossman N, Bono D, Dedic N, et al. Noninvasive deep brain stimulation via temporally interfering electric fields. Cell, 2017, 169(6): 1029-1041.
|
11. |
Limoge A, Robert C, Stanley T H. Transcutaneous cranial electrical stimulation (TCES): a review 1998. Neuroscience and Biobehavioral Reviews, 1999, 23(4): 529-538.
|
12. |
Lebedev V P, MalyginA V, KovalevskiA V, et al. Devices for noninvasive transcranial electrostimulation of the brain endorphinergic system: application for improvement of human psycho-physiological status. Artificial Organs, 2002, 26(3): 248-251.
|
13. |
Katsnelson Y. Transcranial electrostimulation apparatus and method. US, 7769463B2. 2010-08-03.
|
14. |
Shan Y, Wang H, Yang Y, et al. Evidence of a large current of transcranial alternating current stimulation directly to deep brain regions. Molecular Psychiatry, 2023. DOI: 10.1038/s41380-023-02150-8.
|
15. |
Katsnelson Y. Transcranial electrostimulation device and method. US, 9186505B2. 2015-11-17.
|
16. |
Katsnelson Y, Lapshin V, Claude J, et al. Transcranial electrotherapy stimulation device for temporary reduction of pain//Proceeding of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Cancun, Mexico: IEEE, 2003, 25: 2285–2288.
|
17. |
Wang H X, Wang K, Xue Q, et al. Transcranial alternating current stimulation for treating depression: a randomized controlled trial. Brain, 2022, 145(1): 83-91.
|
18. |
Wang H X, Wang L, Zhang W R, et al. Effect of transcranial alternating current stimulation for the treatment of chronic insomnia: a randomized, double-blind, parallel-group, placebo-controlled clinical trial. Psychotherapy and Psychosomatics, 2020, 89(1): 38-47.
|
19. |
Pellegrini M, Zoghi M, Jaberzadeh S. The effects of transcranial direct current stimulation on corticospinal and cortico-cortical excitability and response variability: conventional versus high-definition montages. Neuroscience Research, 2021, 166: 12-25.
|
20. |
Chiang H S, Shakal S, Strain J F, et al. Reversal of unilateral hand movement dysfunction by high definition transcranial direct current stimulation in a patient with chronic traumatic brain injury. Brain Stimulation, 2022, 15(2): 283-285.
|
21. |
Ghafoor U, Yang D, Hong K S. Neuromodulatory effects of HD-tACS/tDCS on the prefrontal cortex: a resting-state fNIRS-EEG study. IEEE Journal of Biomedical and Health Informatics, 2022, 26(5): 2192-2203.
|
22. |
Iordan A D, Ryan S, Tyszkowski T, et al. High-definition transcranial direct current stimulation enhances network segregation during spatial navigation in mild cognitive impairment. Cerebral Cortex, 2022, 32(22): 5230-5241.
|
23. |
Grover S, Nguyen J A, Viswanathan V, et al. High-frequency neuromodulation improves obsessive-compulsive behavior. Nature Medicine, 2021, 27(2): 232-238.
|
24. |
Guo Z, Gong Y, Lu H, et al. Multitarget high-definition transcranial direct current stimulation improves response inhibition more than single-target high-definition transcranial direct current stimulation in healthy participants. Frontiers in Neuroscience, 2022, 16: 905247.
|
25. |
Mikkonen M, Laakso I, Tanaka S, et al. Cost of focality in TDCS: interindividual variability in electric fields. Brain Stimulation, 2020, 13(1): 117-124.
|
26. |
Huang Y, Parra L C. Can transcranial electric stimulation with multiple electrodes reach deep targets. Brain Stimulation, 2019, 12(1): 30-40.
|
27. |
Wessel M J, Beanato E, Popa T, et al. Evidence for temporal interference (TI) stimulation effects on motor striatum. Brain Stimulation, 2021, 14(6): 1684.
|
28. |
Sunshine M D, Cassarà A M, Neufeld E, et al. Restoration of breathing after opioid overdose and spinal cord injury using temporal interference stimulation. Communications Biology, 2021, 4(1): 107.
|
29. |
Wang B, Aberra A, Grill W, et al. Comparing temporal interference stimulation and other kilohertz stimulation modalities using computational models. Brain Stimulation, 2021, 14(6): 1679.
|
30. |
Mirzakhalili E, Barra B, Capogrosso M, et al. Biophysics of temporal interference stimulation. Cell System, 2020, 11(6): 557-572.
|
31. |
Missey F, Rusina E, Acerbo E, et al. Orientation of temporal interference for non-invasive deep brain stimulation in epilepsy. Frontiers in Neuroscience, 2021, 15: 633988.
|
32. |
Gomez-Tames J, Asai A, Hirata A. Multiscale computational model reveals nerve response in a mouse model for temporal interference brain stimulation. Frontiers in Neuroscience, 2021, 15: 684465.
|
33. |
Terasawa Y, Tashiro H, Ueno T, et al. Precise temporal control of interferential neural stimulation via phase modulation. IEEE Transactions on Biomedical Engineering, 2022, 69(1): 220-228.
|
34. |
Huang Y, Datta A, Parra L C. Optimization of interferential stimulation of the human brain with electrode arrays. Journal of Neural Engineering, 2020, 17(3): 036023.
|
35. |
Rampersad S, Roig-Solvas B, Yarossi M, et al. Prospects for transcranial temporal interference stimulation in humans: a computational study. Neuroimage, 2019, 202: 116124.
|
36. |
von Conta J, Kasten F H, Curcic-Blake B, et al. Interindividual variability of electric fields during transcranial temporal interference stimulation (tTIS). Scientific Reports, 2021, 11(1): 20357.
|
37. |
Sorkhabi M M, Wendt K, Denison T. Temporally interfering TMS: focal and dynamic stimulation location//Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Montreal, Canada: IEEE Engn Med & Biol Soc. 2020: 3537-3543.
|
38. |
Xin Z, Kuwahata A, Liu S, et al. Magnetically induced temporal interference for focal and deep-brain stimulation. Frontiers in Human Neuroscience, 2021, 15: 693207.
|
39. |
Liu R, Ma R, Liu X, et al. A noninvasive deep brain stimulation method via temporal-spatial interference magneto-acoustic effect: simulation and experimental validation. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2022, 69(8): 2474-2483.
|
40. |
Howell B, Mcintyre C C. Feasibility of interferential and pulsed transcranial electrical stimulation for neuromodulation at the human scale. Neuromodulation, 2021, 24(5): 843-853.
|
41. |
Balzan P, Tattersall C, Palmer R. Non-invasive brain stimulation for treating neurogenic dysarthria: a systematic review. Annals of Physical and Rehabilitation Medicine, 2022, 65(5): 101580.
|
42. |
Goswami C, Grover P. HingePlace: focused transcranial electrical current stimulation that allows subthreshold fields outside the stimulation target//Annual International Conference of The IEEE Engineering in Medicine and Biology Society, Mexico: IEEE Engn Med & Biol Soc, 2021: 1577-1583.
|
43. |
Haslacher D, Nasr K, Robinson S E, et al. Stimulation artifact source separation (SASS) for assessing electric brain oscillations during transcranial alternating current stimulation (tACS). Neuroimage, 2021, 228: 117571.
|
44. |
Witkowski M, Garcia-Cossio E, Chander B S, et al. Mapping entrained brain oscillations during transcranial alternating current stimulation (tACS). Neuroimage, 2016, 140: 89-98.
|
45. |
Hosseinian T, Yavari F, Biagi M C, et al. External induction and stabilization of brain oscillations in the human. Brain Stimulation, 2021, 14(3): 579-587.
|
46. |
Parker T, Raghu A L B, Fitzgerald J J, et al. Multitarget deep brain stimulation for clinically complex movement disorders. Journal of Neurosurgery, 2020, 134(2): 351-356.
|
47. |
Saturnino G B, Madsen K H, Thielscher A. Optimizing the electric field strength in multiple targets for multichannel transcranial electric stimulation. Journal of Neural Engineering, 2021, 18: 014001.
|