1. |
Lu J, Xu X, Huang Y, et al. Prevalence of depressive disorders and treatment in China: a cross-sectional epidemiological study. Lancet Psychiatry, 2021, 8(11): 981-990.
|
2. |
World Health Organization (WHO). Depression. (2023-03-31)[2023-05-09]. https: //www.who.int/news-room/fact-sheets/detail/depression.
|
3. |
Hopwood M. Anxiety symptoms in patients with major depressive disorder: commentary on prevalence and clinical implications. Neurology and Therapy, 2023, 12(Suppl 1): 5-12.
|
4. |
Dev A, Roy N, Islam M K, et al. Exploration of EEG-based depression biomarkers identification techniques and their applications: A systematic review. IEEE Access, 2022, 10: 16756-16781.
|
5. |
Gao Z, Cui X, Wan W, et al. Signal quality investigation of a new wearable frontal lobe EEG device. Sensors (Basel), 2022, 22(5): 1898.
|
6. |
Sawangjai P, Hompoonsup S, Leelaarporn P, et al. Consumer grade EEG measuring sensors as research tools: a review. IEEE Sensors Journal, 2019, 20(8): 3996-4024.
|
7. |
Ruiz N A L, Del Ángel D S, Olguín H J, et al. Neuroprogression: the hidden mechanism of depression. Neuropsychiatric Disease and Treatment, 2018, 14: 2837-2845.
|
8. |
Schmaal L, Pozzi E, C Ho T, et al. ENIGMA MDD: seven years of global neuroimaging studies of major depression through worldwide data sharing. Translational psychiatry, 2020, 10(1): 172.
|
9. |
de Aguiar Neto F S, Rosa J L G. Depression biomarkers using non-invasive EEG: a review. Neuroscience & Biobehavioral Reviews, 2019, 105: 83-93.
|
10. |
Kappel S L, Rank M L, Toft H O, et al. Dry-contact electrode ear-EEG. IEEE Transactions on Biomedical Engineering, 2019, 66(1): 150-158.
|
11. |
Wan W, Cui X, Gao Z, et al. Frontal EEG-based multi-level attention states recognition using dynamical complexity and extreme gradient boosting. Frontiers in Human Neuroscience, 2021, 15: 673955.
|
12. |
Gao Z, Cui X, Wan W, et al. Long-range correlation analysis of high frequency prefrontal electroencephalogram oscillations for dynamic emotion recognition. Biomedical Signal Processing and Control, 2022, 72: 103291.
|
13. |
Heidlmayr K, Kihlstedt M, Isel F. A review on the electroencephalography markers of Stroop executive control processes. Brain and Cognition, 2020, 146: 105637.
|
14. |
Jiang X, Bian G B, Tian Z. Removal of artifacts from EEG signals: a review. Sensors (Basel), 2019, 19(5): 987.
|
15. |
Cong F. Blind source separation//Hu L, Zhang Z. EEG Signal Processing and Feature Extraction, Singapore: Springer, 2019: 117-140.
|
16. |
Stergiadis C, Kostaridou V D, Klados M A. Which BSS method separates better the EEG signals? A comparison of five different algorithms. Biomedical Signal Processing and Control, 2022, 72: 103292.
|
17. |
Cheng J, Li L, Li C, et al. Remove diverse artifacts simultaneously from a single-channel EEG based on SSA and ICA: a semi-simulated study. IEEE Access, 2019, 7: 60276-60289.
|
18. |
Kumaravel V P, Kartsch V, Benatti S, et al. Efficient artifact removal from low-density wearable EEG using artifacts subspace reconstruction//2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2021: 333-336.
|
19. |
Lin I M, Chen T C, Lin H Y, et al. Electroencephalogram patterns in patients comorbid with major depressive disorder and anxiety symptoms: proposing a hypothesis based on hypercortical arousal and not frontal or parietal alpha asymmetry. Journal of Affective Disorders, 2021, 282: 945-952.
|
20. |
Bachmann M, Päeske L, Kalev K, et al. Methods for classifying depression in single channel EEG using linear and nonlinear signal analysis. Computer Methods and Programs in Biomedicine, 2018, 155: 11-17.
|
21. |
杜雪云, 王淑君, 张轩, 等. 慢性失眠伴焦虑抑郁患者认知功能障碍的γ振荡研究. 中华行为医学与脑科学杂志, 2020, 29(6): 523-528.
|
22. |
Lee P F, Kan D P X, Croarkin P, et al. Neurophysiological correlates of depressive symptoms in young adults: a quantitative EEG study. Journal of Clinical Neuroscience, 2018, 47: 315-322.
|
23. |
Koo P C, Berger C, Kronenberg G, et al. Combined cognitive, psychomotor and electrophysiological biomarkers in major depressive disorder. European Archives of Psychiatry and Clinical Neuroscience, 2019, 269(7): 823-832.
|
24. |
Knociková J A, Petrásek T. Quantitative electroencephalographic biomarkers behind major depressive disorder. Biomedical Signal Processing and Control, 2021, 68: 102596.
|
25. |
Ahmadlou M, Adeli H, Adeli A. Fractality analysis of frontal brain in major depressive disorder. International Journal of Psychophysiology, 2012, 85(2): 206-211.
|
26. |
Faust O, Ang P C A, Puthankattil S D, et al. Depression diagnosis support system based on EEG signal entropies. Journal of Mechanics in Medicine and Biology, 2014, 14(3): 1450035.
|
27. |
Čukić M, Stokić M, Radenković S, et al. Nonlinear analysis of EEG complexity in episode and remission phase of recurrent depression. International Journal of Methods in Psychiatric Research, 2020, 29(2): e1816.
|
28. |
贾凤南, 汤浩, 刘晓雪, 等. 单双相抑郁障碍前额叶-纹状体通路gamma频段效能连接差异. 中国神经精神疾病杂志, 2020, 46(3): 149-153.
|
29. |
Wan Z, Zhang H, Huang J, et al. Single-channel EEG-based machine learning method for prescreening major depressive disorder. International Journal of Information Technology & Decision Making, 2019, 18(5): 1579-1603.
|
30. |
Cai H, Qu Z, Li Z, et al. Feature-level fusion approaches based on multimodal EEG data for depression recognition. Information Fusion, 2020, 59: 127-138.
|
31. |
Newson J J, Thiagarajan T C. EEG frequency bands in psychiatric disorders: a review of resting state studies. Frontiers in Human Neuroscience, 2019, 12: 521.
|
32. |
Vuust P, Heggli O A, Friston K J, et al. Music in the brain. Nature Reviews Neuroscience, 2022, 23(5): 287-305.
|
33. |
Ding Y, Zhang Y, Zhou W, et al. Neural correlates of music listening and recall in the human brain. Journal of Neuroscience, 2019, 39(41): 8112-8123.
|
34. |
Tsekoura K, Foka A. Classification of EEG signals produced by musical notes as stimuli. Expert Systems with Applications, 2020, 159: 113507.
|
35. |
Deuel T A, Pampin J, Sundstrom J, et al. The encephalophone: a novel musical biofeedback device using conscious control of electroencephalogram (EEG). Frontiers in Human Neuroscience, 2017, 11: 213.
|
36. |
Daly I, Williams D, Malik A, et al. Personalised, multi-modal, affective state detection for hybrid brain-computer music interfacing. IEEE Transactions on Affective Computing, 2018, 11(1): 111-124.
|
37. |
Ehrlich S K, Agres K R, Guan C, et al. A closed-loop, music-based brain-computer interface for emotion mediation. PloS One, 2019, 14(3): e0213516.
|