1. |
周超宁, 陈军, 谷有全, 等. 帕金森病患者血脂血尿酸水平与疾病进展的相关性研究. 中国实用神经疾病杂志, 2020, 23(21): 1847-1851.
|
2. |
杨一风, 胡颖, 聂生东. 基于磁共振图像的帕金森病计算机辅助诊断研究进展. 中国生物医学工程学报, 2020, 39(5): 603-610.
|
3. |
Lee S, Hussein R, Ward R, et al. A convolutional-recurrent neural network approach to resting-state EEG classification in Parkinson’s disease. J Neurosci Meth, 2021, 361(2021): 109282.
|
4. |
Yu Zhu, Min Yuan, Yue Liu, et al. Association between inflammatory bowel diseases and Parkinson’s disease: systematic review and meta-analysis. 中国神经再生研究(英文版), 2022, 17(2): 344-353.
|
5. |
Bočková M, Rektor I. Impairment of brain functions in Parkinson’s disease reflected by alterations in neural connectivity in EEG studies: A viewpoint. Clin Neurophysiol, 2019, 130(2): 239-247.
|
6. |
刘瑾, 杨新新, 项洁. 帕金森病康复治疗及其作用机制研究进展. 中国现代神经疾病杂志, 2017, 17(6): 403-408.
|
7. |
Zhu M, HajiHosseini A, Baumeister T R, et al. Altered EEG alpha and theta oscillations characterize apathy in Parkinson’s disease during incentivized movement. Neuroimage Clin, 2019, 23: 101922.
|
8. |
Miladinović A, Ajčević M, Busan P, et al. EEG changes and motor deficits in Parkinson’s disease patients: Correlation of motor scales and EEG power bands. Proced Comput Sci, 2021, 192(2): 2616-2623.
|
9. |
Lainscsek C, Hernandez M, Weyhenmeyer J, et al. Non-linear dynamical analysis of EEG time series distinguishes patients with Parkinson’s disease from healthy individuals. Front Neurol, 2013, 4: 200.
|
10. |
Palmer S J, Lee P W, Jane Z, et al. θ, β but not α-band EEG connectivity has implications for dual task performance in Parkinson’s disease. Parkinsonism Relat Disord, 2010, 16(6): 393-397.
|
11. |
Jaramillo-Jimenez A, Suarez-Revelo J X, Ochoa-Gomez J F, et al. Resting-state EEG alpha/theta ratio related to neuropsychological test performance in Parkinson’s disease. Clin Neurophysiol, 2021, 132(3): 756-764.
|
12. |
Jackson N, Cole S R, Voytek B, et al. Characteristics of waveform shape in Parkinson’s disease detected with scalp electroencephalography. eNeuro, 2019, 6(3): ENEURO.0151-19.2019.
|
13. |
Stoffers D, Bosboom J L W, Deijen J B, et al. Slowing of oscillatory brain activity is a stable characteristic of Parkinson’s disease without dementia. Brain, 2007, 130(7): 1847-1860.
|
14. |
Soikkeli R, Partanen J, Soininen H, et al. Slowing of EEG in Parkinson’s disease. Electroencephalogr Clin Neurophysiol, 1991, 79(3): 159-165.
|
15. |
Takeuchi M, Iwata M, Osawa M. A study on the background activities of EEG in Parkinson disease. Int Congress Ser, 2005, 1278: 337-340.
|
16. |
Zhang R, Jia J. EEG analysis of Parkinson’s disease using time-frequency analysis and deep learning. Biomed Signal Process Control, 2022, 78: 103883.
|
17. |
Gerard M, Bayot M, Derambure P, et al. EEG-based functional connectivity and executive control in patients with Parkinson’s disease and freezing of gait. Clin Neurophysiol, 2022, 137: 207-215.
|
18. |
Conti M, Bovenzi R, Garasto E, et al. Brain functional connectivity in de novo Parkinson’s disease patients based on clinical EEG. Front Neurol, 2022, 13: 844745.
|
19. |
Imperatori L S, Betta M, Cecchetti L, et al. EEG functional connectivity metrics wPLI and wSMI account for distinct types of brain functional interactions. Sci Rep, 2019, 9: 8894.
|
20. |
Fu Z, Armin I, Turner J A, et al. Dynamic state with covarying brain activity-connectivity: On the pathophysiology of schizophrenia. NeuroImage, 2021, 224: 117385.
|
21. |
Bourdillon P, Hermann B, Guénot M, et al. Brain-scale cortico-cortical functional connectivity in the delta-theta band is a robust signature of conscious states: an intracranial and scalp EEG study. Sci Rep, 2020, 10(1): 14037.
|
22. |
George J S, Strunk J, Mak-McCully R, et al. Dopaminergic therapy in Parkinson’s disease decreases cortical beta band coherence in the resting state and increases cortical beta band power during executive control. Neuroimage Clin, 2013, 3: 261-270.
|
23. |
King J, Sitt J D, Faugeras F, et al. Information sharing in the brain indexes consciousness in noncommunicative patients. Curr Biol, 2012, 23(9): 1914-1919.
|
24. |
Díez-Cirarda M, Strafella A P, Kim J, et al. Dynamic functional connectivity in Parkinson’s disease patients with mild cognitive impairment and normal cognition. Neuroimage Clin, 2017, 17: 847-855.
|
25. |
Fu Z, Tu Y, Di X, et al. Characterizing dynamic amplitude of low-frequency fluctuation and its relationship with dynamicfunctional connectivity: an application to schizophrenia. NeuroImage, 2018, 180(Part B): 619-631.
|
26. |
Ikotun A M, Ezugwu A E, Abualigah L, et al. K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Inf Sci, 2023, 622: 178-210.
|