1. |
Gao S, Liu G, Yang H, et al. An oxide Schottky junction artificial optoelectronic synapse. ACS Nano, 2019, 13(2): 2634-2642.
|
2. |
Lenaers G, Neutzner A, Le Dantec Y, et al. Dominant optic atrophy: Culprit mitochondria in the optic nerve. Prog Retin Eye Res, 2021, 83: 100935.
|
3. |
Steinsapir K D, Goldberg R A. Traumatic optic neuropathy. Surv Ophthalmol, 1994, 38(6): 487-518.
|
4. |
Gu L, Poddar S, Lin Y, et al. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature, 2020, 581(7808): 278-282.
|
5. |
Benner A F, Ignatowski M, Kash J A, et al. Exploitation of optical interconnects in future server architectures. IBM J Res Dev, 2005, 49(4.5): 755-775.
|
6. |
Yang Y, He Y, Nie S, et al. Light stimulated IGZO-based electric-double-layer transistors for photoelectric neuromorphic devices. IEEE Electr Device L, 2018, 39(6): 897-900.
|
7. |
Kwon S M, Cho S W, Kim M, et al. Environment-adaptable artificial visual perception behaviors using a light-adjustable optoelectronic neuromorphic device array. Adv Mater, 2019, 31(52): 1906433.
|
8. |
Agnus G, Zhao W, Derycke V, et al. Two-terminal carbon nanotube programmable devices for adaptive architectures. Adv Mater, 2010, 6(22): 702-706.
|
9. |
何立铧, 李恩龙, 俞礽坚, 等. 基于铁电材料P(VDF-TrFE)调控的多级光突触晶体管. 光子学报, 2021, 50(9): 260-267.
|
10. |
Hao D, Zhang J, Dai S, et al. Perovskite/organic semiconductor-based photonic synaptic transistor for artificial visual system. ACS Appl Mater Interfaces, 2020, 12(35): 39487-39495.
|
11. |
Subramanian Periyal S, Jagadeeswararao M, Ng S E, et al. Halide perovskite quantum dots photosensitized-amorphous oxide transistors for multimodal synapses. Adv Mater Technol, 2020, 5(11): 2000514.
|
12. |
Giovannitti A, Nielsen C B, Sbircea D T, et al. N-type organic electrochemical transistors with stability in water. Nat Commun, 2016, 7(1): 13066.
|
13. |
Wang Z, Zhou H, Chen W, et al. Dually synergetic network hydrogels with integrated mechanical stretchability, thermal responsiveness, and electrical conductivity for strain sensors and temperature alertors. ACS Appl Mater Interfaces, 2018, 10(16): 14045-14054.
|
14. |
Ma C, Luo H, Liu M, et al. Preparation of intrinsic flexible conductive PEDOT: PSS@ionogel composite film and its application for touch panel. Chem Eng J, 2021, 425: 131542.
|
15. |
Cavallo A, Losi P, Buscemi M, et al. Biocompatible organic electrochemical transistor on polymeric scaffold for wound healing monitoring. Flex Print Electron, 2022, 7(3): 035009.
|
16. |
Bai J, Liu D, Tian X, et al. Tissue-like organic electrochemical transistors. J Mater Chem C, 2022, 10(37): 13303-13311.
|
17. |
Ashton N J, Janelidze S, Al Khleifat A, et al. A multicentre validation study of the diagnostic value of plasma neurofilament light. Nat Commun, 2021, 12(1): 3400.
|
18. |
Shi Y, Zhou Y, Shen R, et al. Solution-based synthesis of PEDOT: PSS films with electrical conductivity over 6300 S/cm. J Ind Eng Chem, 2021, 101: 414-422.
|
19. |
Ye Y, Wang J, Qiu Y, et al. Ultra-low EQE roll-off and marvelous efficiency perovskite quantum-dots light-emitting-diodes achieved by ligand passivation. Nano Energy, 2021, 90: 106583.
|
20. |
Proctor C M, Rivnay J, Malliaras G G. Understanding volumetric capacitance in conducting polymers. J Polym Sci Pol Phys, 2016, 54(15): 1433-1436.
|
21. |
Fang L, Dai S, Zhao Y, et al. Light-stimulated artificial synapses based on 2D organic field-effect transistors. Adv Electron Mater, 2020, 6(1): 1901217.
|
22. |
Kim M K, Lee J S. Short-term plasticity and long-term potentiation in artificial biosynapses with diffusive dynamics. ACS Nano, 2018, 12(2): 1680-1687.
|
23. |
Ahmed T, Kuriakose S, Mayes E L H, et al. Optically stimulated artificial synapse based on layered black phosphorus. Small, 2019, 15(22): 1900966.
|