1. |
Viergever M A, Romeny B H, Goudoever J V. Computer-aided diagnosis in chest radiography: a survey. IEEE Trans Med Imaging, 2001, 20(12): 1228-1241.
|
2. |
Hasan M J, Alom M S, Ali M S. Deep learning based detection and segmentation of COVID-19 & Pneumonia on chest X-ray image// 2021 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD). Dhaka: IEEE, 2021: 210-214.
|
3. |
Abdulah H, Huber B, Lal S, et al. Lung segmentation in chest X-rays with Res-CR-Net. arXiv, 2020: 2011.08655.
|
4. |
Tseng L Y, Huang L C. An adaptive thresholding method for automatic lung segmentation in CT images// Africon 2009. Nairobi: IEEE, 2009: 1-5.
|
5. |
Yan Z, Cheng X. Medical image segmentation based on watershed and graph theory// 2010 3rd International Congress on Image and Signal Processing. Yantai: IEEE, 2010: 1419-1422.
|
6. |
Saad M N, Muda Z, Ashaari N S, et al. Image segmentation for lung region in chest X-ray images using edge detection and morphology// 2014 IEEE International Conference on Control System, Computing and Engineering (ICCSCE 2014). Penang: IEEE, 2014: 46-51.
|
7. |
Ginneken B V, Stegmann M B, Loog M. Segmentation of anatomical structures in chest radiographs using supervised methods: a comparative study on a public database. Med Image Anal, 2006, 10(1): 19-40.
|
8. |
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell, 2015, 39(4): 640-651.
|
9. |
Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation// 18th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). Munich: Medical Image Computing and Computer Assisted Intervention Society, 2015: 234-241.
|
10. |
Hooda R, Mittal A, Sofat S. An efficient variant of fully-convolutional network for segmenting lung fields from chest radiographs. Wireless Pers Commun, 2018, 101(3): 1559-1579.
|
11. |
Rashid R, Akram M U, Hassan T. Fully convolutional neural network for lungs segmentation from chest X-Rays// 15th International Conference Image Analysis and Recognition (ICIAR). Póvoa de Varzim: Association for Image and Machine Intelligence, 2018: 71-80.
|
12. |
Chen H, Qi X, Yu L, et al. DCAN: Deep contour-aware networks for accurate gland segmentation// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 2487-2496.
|
13. |
Kholiavchenko M, Sirazitdinov I, Kubrak K, et al. Contour-aware multi-label chest X-ray organ segmentation. Int J Comput Ass Rad, 2020, 15(3): 425-436.
|
14. |
Chen L, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation// 15th European Conference on Computer Vision (ECCV). Munich: ECCV, 2018: 833-851.
|
15. |
Fu J, Liu J, Tian H, et al. Dual attention network for scene segmentation// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). California: IEEE, 2019: 3141-3149.
|
16. |
Oktay O, Schlemper J, Folgoc L L, et al. Attention U-net: Learning where to look for the pancreas. arXiv, 2018: 1804.03999.
|
17. |
Wang X, Girshick R, Gupta A, et al. Non-local neural networks// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City: IEEE, 2018: 7794-7803.
|
18. |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need// 31st Conference on Neural Information Processing Systems (NeurIPS). Long Beach: Neural Information Processing Systems Foundation, 2017: 6000-6010.
|
19. |
Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: transformers for image recognition at scale. arXiv, 2021: 2010.11929.
|
20. |
Carion N, Massa F, Synnaeve G N, et al. End-to-end object detection with transformers// 16th European Conference on Computer Vision (ECCV). Glasgow: ECCV, 2020: 213-229.
|
21. |
Chen J, Lu Y, Yu Q, et al. TransUNet: transformers make strong encoders for medical image segmentation. arXiv, 2021: 2102.04306.
|
22. |
Zhen Mingmin, Wang Jinglu, Zhou Lei, et al. Joint semantic segmentation and boundary detection using iterative pyramid contexts// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020: 13663-13672.
|
23. |
Ding Henghui, Jiang Xudong, Liu Aiqun, et al. Boundary-aware feature propagation for scene segmentation// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul: IEEE, 2019: 6818-6828.
|
24. |
Hong J L, Kim J U, Lee S, et al. Structure boundary preserving segmentation for medical image with ambiguous boundary// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020: 4816-4825.
|
25. |
Wang J, Wei L, Wang L, et al. Boundary-aware transformers for skin lesion segmentation// 21th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). Marleen de Bruijne: Medical Image Computing and Computer Assisted Intervention Society, 2021: 206-216.
|
26. |
He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 770-778.
|
27. |
Canny J F. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell, 1986(6): 679-698.
|
28. |
Shiraishi J, Katsuragawa S, Ikezoe J, et al. Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules. Am J Roentgenol, 2000, 174(1): 71-74.
|
29. |
Jaeger S, Candemir S, Antani S, et al. Two public chest X-ray datasets for computer-aided screening of pulmonary diseases. Quant Imag Med Surg, 2014, 4(6): 475-477.
|