1. |
马丽媛, 王增武, 樊静, 等. 《中国心血管健康与疾病报告2021》要点解读. 中国全科医学, 2022, 25(27): 3331-3346.
|
2. |
Vogel B, Claessen B E, Arnold S V, et al. ST-segment elevation myocardial infarction. Nature Reviews Disease Primers, 2019, 5(1): 39.
|
3. |
He R, Liu Y, Wang K, et al. Automatic detection of QRS complexes using dual channels based on U-Net and bidirectional long short-term memory. IEEE Journal of Biomedical and Health Informatics, 2021, 25(4): 1052-1061.
|
4. |
Liu Lingfeng, Bai Baodan, Chen Xinrong, et al. Semantic segmentation of QRS complex in single channel ECG with bidirectional LSTM networks. Journal of Medical Imaging and Health Informatics, 2020, 10(3): 758-762.
|
5. |
Peimankar A, Puthusserypady S. DENS-ECG: A deep learning approach for ECG signal delineation. Expert Systems with Applications, 2021, 165: 113911.
|
6. |
刘近贞, 孙利飞, 熊慧, 等. 基于能量分段与平稳小波变换的运动心电图特征波检测算法研究. 生物医学工程学杂志, 2021, 38(6): 1181-1192.
|
7. |
Londhe A N, Atulkar M. Semantic segmentation of ECG waves using hybrid channel-mix convolutional and bidirectional LSTM. Biomedical Signal Processing and Control, 2021, 63: 102162.
|
8. |
Han C, Que W, Wang S, et al. QRS complexes and T waves localization in multi-lead ECG signals based on deep learning and electrophysiology knowledge. Expert Systems with Applications, 2022, 199: 117187.
|
9. |
周飞燕. 心电图分析的多分类器融合及其评价方法研究. 合肥: 中国科学技术大学,2017.
|
10. |
杜海曼, 边婷, 熊鹏, 等. 基于支持向量机多特征融合ST段形态分类. 生物医学工程学杂志, 2022, 39(4): 702-712.
|
11. |
谢佳静, 魏守水, 江兴娥, 等. 基于CNN和频率切片小波变换的T波形态分类. 中国生物医学工程学报, 2021, 40(1): 1-11.
|
12. |
熊鹏, 齐明锐, 张杰烁, 等. 基于形态学特征的下壁心肌梗死检测. 生物医学工程学杂志, 2021, 38(1): 65-71.
|
13. |
Swain S S, Patra D, Singh Y O. Automated detection of myocardial infarction in ECG using modified Stockwell transform and phase distribution pattern from time-frequency analysis. Biocybernetics and Biomedical Engineering, 2020, 40(3): 1174-1189.
|
14. |
Dohare A K, Kumar V, Kumar R. Detection of myocardial infarction in 12 lead ECG using support vector machine. Applied Soft Computing, 2018, 64: 138-147.
|
15. |
Lin Z, Gao Y, Chen Y, et al. Automated detection of myocardial infarction using robust features extracted from 12-lead ECG. Signal, Image and Video Processing, 2020, 14: 857-865.
|
16. |
Fatimah B, Singh P, Singhal A, et al. Efficient detection of myocardial infarction from single lead ECG signal. Biomedical Signal Processing and Control, 2021, 68: 102678.
|
17. |
Zhang J, Liu M, Xiong P, et al. Automated localization of myocardial infarction of image-based multilead ECG tensor with Tucker2 decomposition. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-15.
|
18. |
Zhang J, Liu M, Xiong P, et al. Automated localization of myocardial infarction from vectorcardiographic via tensor decomposition. IEEE Transactions on Biomedical Engineering, 2023, 70(3): 812-823.
|
19. |
Zhang J, Liu M, Xiong P, et al. A multi-dimensional association information analysis approach to automated detection and localization of myocardial infarction. Engineering Applications of Artificial Intelligence, 2021, 97: 104092.
|
20. |
Sun Q, Liang C, Chen T, et al. Early detection of myocardial ischemia in 12-lead ECG using deterministic learning and ensemble learning. Computer Methods and Programs in Biomedicine, 2022, 226: 107124.
|
21. |
Acharya U R, Fujita H, Oh S L, et al. Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Information Sciences, 2017, 415-416: 190-198.
|
22. |
Jian J Z, Ger T R, Lai H H, et al. Detection of myocardial infarction using ECG and multi-scale feature concatenate. Sensors, 2021, 21(5): 1906.
|
23. |
Pan W, An Y, Guan Y, et al. MCA-net: a multi-task channel attention network for myocardial infarction detection and location using 12-lead ECGs. Computers in Biology and Medicine, 2022, 150: 106199.
|
24. |
Han C, Shi L. ML–ResNet: a novel network to detect and locate myocardial infarction using 12 leads ECG. Computer Methods and Programs in Biomedicine, 2020, 185: 105138.
|
25. |
Cao Y, Liu W, Zhang S, et al. Detection and localization of myocardial infarction based on multi-scale ResNet and attention mechanism. Frontiers in Physiology, 2022, 13: 783184.
|
26. |
Xiong P, Xue Y, Zhang J, et al. Localization of myocardial infarction with multi-lead ECG based on DenseNet. Computer Methods and Programs in Biomedicine, 2021, 203: 106024.
|
27. |
熊鹏, 薛彦平, 刘明, 等. 基于密集连接卷积神经网络的下壁心肌梗死检测. 生物医学工程学杂志, 2020, 37(1): 142-149.
|
28. |
Jahmunah V, Ng E Y K, Tan R S, et al. Explainable detection of myocardial infarction using deep learning models with Grad-CAM technique on ECG signals. Computers in Biology and Medicine, 2022, 146: 105550.
|
29. |
Sugimoto K, Kon Y, Lee S, et al. Detection and localization of myocardial infarction based on a convolutional autoencoder. Knowledge-Based Systems, 2019, 178: 123-131.
|
30. |
徐文畅, 何文明, 游斌权, 等. 基于形态特征提取的急性下壁心肌梗死BiLSTM网络辅助诊断算法. 电子与信息学报, 2021, 43(9): 2561-2568.
|
31. |
Liu W, Wang F, Huang Q, et al. MFB-CBRNN: a hybrid network for MI detection using 12-lead ECGs. IEEE Journal of Biomedical and Health Informatics, 2020, 24(2): 503-514.
|
32. |
Rai H M, Chatterjee K. Hybrid CNN-LSTM deep learning model and ensemble technique for automatic detection of myocardial infarction using big ECG data. Applied Intelligence, 2022, 52(5): 5366-5384.
|
33. |
Fu L, Lu B, Nie B, et al. Hybrid network with attention mechanism for detection and location of myocardial infarction based on 12-lead electrocardiogram signals. Sensors, 2020, 20(4): 1020.
|
34. |
He Z, Yuan S, Zhao J, et al. A novel myocardial infarction localization method using multi-branch DenseNet and spatial matching-based active semi-supervised learning. Information Sciences, 2022, 606: 649-668.
|
35. |
He Z, Yuan S, Zhao J, et al. A robust myocardial infarction localization system based on multi-branch residual shrinkage network and active learning with clustering. Biomedical Signal Processing and Control, 2023, 80: 104238.
|
36. |
Prabhakararao E, Dandapat S. Myocardial infarction severity stages classification from ECG signals using attentional recurrent neural network. IEEE Sensors Journal, 2020, 20(15): 8711-8720.
|
37. |
Tadesse G A, Javed H, Weldemariam K, et al. DeepMI: deep multi-lead ECG fusion for identifying myocardial infarction and its occurrence-time. Artificial Intelligence in Medicine, 2021, 121: 102192.
|
38. |
Liu J, Wang R, Wen B, et al. Myocardial infarction detection and localization with electrocardiogram based on convolutional neural network. Chinese Journal of Electronics, 2021, 30(5): 833-842.
|
39. |
He C, Liu M, Xiong P, et al. Localization of myocardial infarction using a multi-branch weight sharing network based on 2-D vectorcardiogram. Engineering Applications of Artificial Intelligence, 2022, 116: 105428.
|
40. |
Hao P, Gao X, Li Z, et al. Multi-branch fusion network for myocardial infarction screening from 12-lead ECG images. Computer Methods and Programs in Biomedicine, 2020, 184: 105286.
|
41. |
Anand A, Kadian T, Shetty M K, et al. Explainable AI decision model for ECG data of cardiac disorders. Biomedical Signal Processing and Control, 2022, 75: 103584.
|
42. |
Sharma M, Tan R S, Acharya U R. A novel automated diagnostic system for classification of myocardial infarction ECG signals using an optimal biorthogonal filter bank. Computers in Biology and Medicine, 2018, 102: 341-356.
|
43. |
Sharma L D, Sunkaria R K. Inferior myocardial infarction detection using stationary wavelet transform and machine learning approach. Signal, Image and Video Processing, 2018, 12(2): 199-206.
|
44. |
Fang R, Lu C C, Chuang C T, et al. A visually interpretable detection method combines 3-D ECG with a multi-VGG neural network for myocardial infarction identification. Computer Methods and Programs in Biomedicine, 2022, 219: 106762.
|
45. |
Ribeiro A H, Ribeiro M H, Paixão G M M, et al. Automatic diagnosis of the 12-lead ECG using a deep neural network. Nature Communications, 2020, 11(1): 1760.
|
46. |
Zhu H, Cheng C, Yin H, et al. Automatic multilabel electrocardiogram diagnosis of heart rhythm or conduction abnormalities with deep learning: a cohort study. The Lancet Digital Health, 2020, 2(7): e348-e357.
|