1. |
Jin L J, Lamster I B, Greenspan J S, et al. Global burden of oral diseases: emerging concepts, management and interplay with systemic health. Oral Diseases, 2016, 22(7): 609-619.
|
2. |
Yazdanian M, Karami S, Tahmasebi E, et al. Dental radiographic/digital radiography technology along with biological agents in human identification. Scanning, 2022, 2022: 5265912.
|
3. |
Cortes A R. Digital dentistry: a step-by-step guide and case atlas. John Wiley & Sons, 2022.
|
4. |
Price J B. Digital imaging. Clinical Applications of Digital Dental Technology, 2022. DOI: 10.1002/9781119800613.ch1.
|
5. |
苏少华, 任少华. CBCT在口腔颌面外科诊疗中的应用及进展. 疾病监测与控制, 2020, 14(6): 501-504.
|
6. |
Araujo G T T, Peralta-Mamani M, Silva A F M D, et al. Influence of cone beam computed tomography versus panoramic radiography on the surgical technique of third molar removal: a systematic review. International Journal of Oral and Maxillofacial Surgery, 2019, 48(10): 1340-1347.
|
7. |
Bui T, Hamamoto K, Paing M P. Deep fusion feature extraction for caries detection on dental panoramic radiographs. Applied Sciences, 2021, 11(5): 2005.
|
8. |
Lurie A, Tosoni G M, Tsimikas J, et al. Recursive hierarchic segmentation analysis of bone mineral density changes on digital panoramic images. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2012, 113(4): 549-558.
|
9. |
Tikhe S V, Naik A M, Bhide S D, et al. Algorithm to identify enamel caries and interproximal caries using dental digital radiographs//2016 IEEE 6th International Conference on Advanced Computing (IACC), IEEE, 2016.
|
10. |
Tuan T M. A cooperative semi-supervised fuzzy clustering framework for dental X-ray image segmentation. Expert Systems with Applications, 2016, 46: 380-393.
|
11. |
Trivedi D N, Kothari A M, Shah S, et al. Dental image matching by Canny algorithm for human identification. International Journal of Advanced Computer Research, 2014, 4(4): 985.
|
12. |
Mohanapriya N, Kalaavathi B. Adaptive image enhancement using hybrid particle swarm optimization and watershed segmentation. Intelligent Automation & Soft Computing, 2019, 25(4): 663-672.
|
13. |
Alsmadi M K. A hybrid fuzzy C-means and neutrosophic for jaw lesions segmentation. Ain Shams Engineering Journal, 2018, 9(4): 697-706.
|
14. |
Li H, Sun G, Sun H, et al. Watershed algorithm based on morphology for dental X-ray images segmentation//2012 IEEE 11th International conference on signal processing. IEEE, 2012: 877-880.
|
15. |
Hojjatoleslami S A, Kruggel F. Segmentation of large brain lesions. IEEE Transactions on Medical Imaging, 2001, 20(7): 666-669.
|
16. |
Habib A B, Akhter M E, Sultaan R, et al. Performance analysis of different 2D and 3D CNN model for liver semantic segmentation: a review// Proceeding of 2020 International Conference on Medical Imaging and Computer-Aided Diagnosis (MICAD 2020). Singapore: Springer, 2020: 166-174.
|
17. |
田素坤, 戴宁, 袁福来, 等. 多级层次三维卷积神经网络的牙颌模型分割与识别技术. 计算机辅助设计与图形学学报, 2020, 32(8): 1218-1227.
|
18. |
Koch T L, Perslev M, Igel C, et al. Accurate segmentation of dental panoramic radiographs with U-Nets//2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). IEEE, 2019: 15-19.
|
19. |
Çiçek Ö, Abdulkadir A, Lienkamp S S, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation//Medical Image Computing and Computer-Assisted Intervention (MICCAI 2016), Athens: Springer, 2016: 424-432.
|
20. |
Cui W, Zeng L, Chong B, et al. Toothpix: pixel-level tooth segmentation in panoramic X-ray images based on generative adversarial networks//2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), IEEE, 2021.
|
21. |
Bae M, Park J W, Kim N. Semi-automatic and robust determination of dental arch form in dental cone-beam CT with B-spline approximation. Computer Methods and Programs in Biomedicine, 2019, 172: 95-101.
|
22. |
Ammad M, Ramli A. Cubic B-spline curve interpolation with arbitrary derivatives on its data points//2019 23rd International Conference in Information Visualization–Part II, IEEE, 2019: 156-159.
|
23. |
Yun Z, Yang S, Huang E, et al. Automatic reconstruction method for high-contrast panoramic image from dental cone-beam CT data. Computer Methods and Programs in Biomedicine, 2019, 175: 205-214.
|
24. |
Guo M, Li Y, Su Y, et al. Rapid image deconvolution and multiview fusion for optical microscopy. Nature Biotechnology, 2020, 38(11): 1337-1346.
|
25. |
Amorim P H J, Moraes T F, Silva J V L, et al. Reconstruction of panoramic dental images through Bézier function optimization. Frontiers in Bioengineering and Biotechnology, 2020, 8: 794.
|
26. |
Milletari F, Navab N, Ahmadi S. V-net: fully convolutional neural networks for volumetric medical image segmentation//2016 4th International Conference on 3D Vision (3DV). IEEE, 2016: 565-571.
|
27. |
Zhang T Y, Suen C Y. A fast parallel algorithm for thinning digital patterns. Communications of the ACM, 1984, 27(3): 236-239.
|
28. |
Powell M J D. Nonlinear programming-sequential unconstrained minimization techniques. The Computer Journal, 1969, 12(3): 207.
|