1. |
Luo S Z, Mo X, Afshar-Kharghan V, et al. Glycoprotein Ibalpha forms disulfide bonds with 2 glycoprotein Ibbeta subunits in the resting platelet. Blood, 2007, 109(2): 603-609.
|
2. |
Mo X, Liu L, López J A, et al. Transmembrane domains are critical to the interaction between platelet glycoprotein V and glycoprotein Ib-IX complex. J Thromb Haemost, 2012, 10(9): 1875-1886.
|
3. |
Canobbio I, Balduini C, Torti M. Signalling through the platelet glycoprotein Ib-V-IX complex. Cell Signal, 2004, 16(12): 1329-1344.
|
4. |
Du X, Fox J E, Pei S. Identification of a binding sequence for the 14-3-3 protein within the cytoplasmic domain of the adhesion receptor, platelet glycoprotein Ib alpha. J Biol Chem, 1996, 271(13): 7362-7367.
|
5. |
Okita J R, Pidard D, Newman P J, et al. On the association of glycoprotein Ib and actin-binding protein in human platelets. J Cell Biol, 1985, 100(1): 317-321.
|
6. |
Arce N A, Cao W, Brown A K, et al. Activation of von Willebrand factor via mechanical unfolding of its discontinuous autoinhibitory module. Nat Commun, 2021, 12(1): 2360.
|
7. |
Fu H, Jiang Y, Yang D, et al. Flow-induced elongation of von Willebrand factor precedes tension-dependent activation. Nat Commun, 2017, 8(1): 324.
|
8. |
Springer T A. von Willebrand factor, Jedi knight of the bloodstream. Blood, 2014, 124(9): 1412-1425.
|
9. |
Estevez B, Kim K, Delaney MK, et al. Signaling-mediated cooperativity between glycoprotein Ib-IX and protease-activated receptors in thrombin-induced platelet activation. Blood, 2016, 127(5): 626-636.
|
10. |
Shen C, Liu M, Xu R, et al. The 14-3-3ζ-c-Src-integrin-β3 complex is vital for platelet activation. Blood, 2020, 136(8): 974-988.
|
11. |
Chen Y, Ju LA, Zhou F, et al. An integrin αIIbβ3 intermediate affinity state mediates biomechanical platelet aggregation. Nat Mater, 2019, 18(7): 760-769.
|
12. |
Nakamura F, Osborn T M, Hartemink C A, et al. Structural basis of filamin A functions. J Cell Biol, 2007, 179(5): 1011-1025.
|
13. |
Pudas R, Kiema T R, Butler P J, et al. Structural basis for vertebrate filamin dimerization. Structure, 2005, 13(1): 111-119.
|
14. |
Seo M D, Seok S H, Im H, et al. Crystal structure of the dimerization domain of human filamin A. Proteins, 2009, 75(1): 258-263.
|
15. |
Zhou A X, Hartwig J H, Akyürek L M. Filamins in cell signaling, transcription and organ development. Trends Cell Biol, 2010, 20(2): 113-123.
|
16. |
Feng S, Reséndiz J C, Lu X, et al. Filamin A binding to the cytoplasmic tail of glycoprotein Ibalpha regulates von Willebrand factor-induced platelet activation. Blood, 2003, 102(6): 2122-2129.
|
17. |
Williamson D, Pikovski I, Cranmer S L, et al. Interaction between platelet glycoprotein Ibalpha and filamin-1 is essential for glycoprotein Ib/IX receptor anchorage at high shear. J Biol Chem, 2002, 277(3): 2151-2159.
|
18. |
Nakamura F, Stossel T P, Hartwig J H. The filamins: organizers of cell structure and function. Cell Adh Migr, 2011, 5(2): 160-169.
|
19. |
Kiema T, Lad Y, Jiang P, et al. The molecular basis of filamin binding to integrins and competition with talin. Mol Cell, 2006, 21(3): 337-347.
|
20. |
Nakamura F, Pudas R, Heikkinen O, et al. The structure of the GPIb-filamin A complex. Blood, 2006, 107(5): 1925-1932.
|
21. |
Qiu Y, Ciciliano J, Myers D R, et al. Platelets and physics: How platelets "feel" and respond to their mechanical microenvironment. Blood Rev, 2015, 29(6): 377-386.
|
22. |
Ju L, Chen Y, Zhou F, et al. Von Willebrand factor-A1 domain binds platelet glycoprotein Ibα in multiple states with distinctive force-dependent dissociation kinetics. Thromb Res, 2015, 136(3): 606-612.
|
23. |
Chen Z, Mondal N K, Ding J, et al. Activation and shedding of platelet glycoprotein IIb/IIIa under non-physiological shear stress. Mol Cell Biochem, 2015, 409(1-2): 93-101.
|
24. |
Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph, 1996, 14(1): 33-38.
|
25. |
李雨峰, 方颖, 吴建华. 利用分子动力学模拟探究力学信号对CD44/FERM复合物结构的影响. 生物医学工程学杂志, 2018, 35(4): 501-508.
|
26. |
Su S, Ling Y, Fang Y, et al. Force-enhanced biophysical connectivity of platelet β3 integrin signaling through Talin is predicted by steered molecular dynamics simulations. Sci Rep, 2022, 12(1): 4605.
|
27. |
Ji Y, Fang Y, Wu J. Tension enhances the binding affinity of β1 integrin by clamping Talin tightly: an insight from steered molecular dynamics simulations. J Chem Inf Model, 2022, 62(22): 5688-5698.
|
28. |
Liu G, Fang Y, Wu J. A mechanism for localized dynamics-driven affinity regulation of the binding of von Willebrand factor to platelet glycoprotein Ibα. J Biol Chem, 2013, 288(37): 26658-26667.
|
29. |
Rosa J P, Raslova H, Bryckaert M. Filamin A: key actor in platelet biology. Blood, 2019, 134(16): 1279-1288.
|
30. |
Ringer P, Colo G, Fässler R, et al. Sensing the mechano-chemical properties of the extracellular matrix. Matrix Biol, 2017, 64: 6-16.
|
31. |
Oria R, Wiegand T, Escribano J, et al. Force loading explains spatial sensing of ligands by cells. Nature, 2017, 552(7684): 219-224.
|
32. |
Ju L, Chen Y, Xue L, et al. Cooperative unfolding of distinctive mechanoreceptor domains transduces force into signals. Elife, 2016, 5: e15447.
|
33. |
Merten M, Chow T, Hellums J D, et al. A new role for P-selectin in shear-induced platelet aggregation. Circulation, 2000, 102(17): 2045-2050.
|