1. |
Liang Z, Li G, Wang Z, et al. BL-Hi-C is an efficient and sensitive approach for capturing structural and regulatory chromatin interactions. Nat Commun, 2017, 8(1): 1622.
|
2. |
Dixon J R, Selvaraj S, Yue F, et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 2012, 485(7398): 376.
|
3. |
Tan L, Xing D, Chang C-H, et al. Three-dimensional genome structures of single diploid human cells. Science, 2018, 361(6405): 924-928.
|
4. |
Gridina M, Taskina A, Lagunov T, et al. Comparison and critical assessment of single-cell Hi-C protocols. Heliyon, 2022, 8(10): e11023.
|
5. |
Han C G, Xie Q, Lin S L. Are dropout imputation methods for scRNA-seq effective for scHi-C data?. Brief Bioinform, 2021, 22(4): bbaa289.
|
6. |
Zhen C W, Wang Y X, Geng J Q, et al. A review and performance evaluation of clustering frameworks for single-cell Hi-C data. Brief Bioinform, 2022, 23(6): bbac385.
|
7. |
Chi Y, Shi J Y, Xing D, et al. Every gene everywhere all at once: High-precision measurement of 3D chromosome architecture with single-cell Hi-C. Front Mol Biosci, 2022, 9: 959688.
|
8. |
Ding T Y, Zhang H. Novel biological insights revealed from the investigation of multiscale genome architecture. Comput Struct Biotechnol J, 2023, 21: 312-325.
|
9. |
Kim K, Kim M, Kim Y, et al. Hi-C as a molecular rangefinder to examine genomic rearrangements. Semin Cell Dev Biol, 2022, 121: 161-170.
|
10. |
Ulianov S V, Razin S V. The two waves in single-cell 3D genomics. Semin Cell Dev Biol, 2022, 121: 143-152.
|
11. |
潘多, 李华梅, 刘宏德, 等. 单细胞数据的整合方法综述. 生物医学工程学杂志, 2021, 38(5): 1010-1017.
|
12. |
Horton C A, Alver B H, Park P J. GiniQC: a measure for quantifying noise in single-cell Hi-C data. Bioinformatics, 2020, 36(9): 2902-2904.
|
13. |
Wolff J, Rabbani L, Gilsbach R, et al. Galaxy HiCExplorer 3: a web server for reproducible Hi-C, capture Hi-C and single-cell Hi-C data analysis, quality control and visualization. Nucleic Acids Res, 2020, 48(W1): W177-W184.
|
14. |
Zheng Y, Shen S Q, Keles S. Normalization and de-noising of single-cell Hi-C data with BandNorm and scVI-3D. Genome Biol, 2022, 23(1): 222.
|
15. |
Wolff J, Abdennur N, Backofen R, et al. Scool: a new data storage format for single-cell Hi-C data. Bioinformatics, 2021, 37(14): 2053-2054.
|
16. |
Gong H, Yang Y, Zhang X, et al. NeRV-3D-DC: A nonlinear dimensionality reduction visualization method for 3D chromosome structure reconstruction with high resolution Hi-C data// 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). Las Vegas: IEEE, 2022: 422-429.
|
17. |
Lieberman-Aiden E, Van Berkum N L, Williams L, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 2009, 326(5950): 289-293.
|
18. |
Gong H, Yang Y, Zhang X, et al. CASPIAN: A method to identify chromatin topological associated domains based on spatial density cluster. Comput Struct Biotechnol J, 2022, 20: 4816-4824.
|
19. |
Gong H, Li M, Ji M, et al. MINE is a method for detecting spatial density of regulatory chromatin interactions based on a multi-modal network. Cell Reps Methods, 2023, 3(1): 100386.
|
20. |
Kos P I, Galitsyna A A, Ulianov S V, et al. Perspectives for the reconstruction of 3D chromatin conformation using single cell Hi-C data. Plos Comput Biol, 2021, 17(11): e1009546.
|
21. |
Meng L M, Wang C X, Shi Y, et al. Si-C is a method for inferring super-resolution intact genome structure from single-cell Hi-C data. Nat Commun, 2021, 12(1): 4369.
|
22. |
Messelink J J B, Van Teeseling M C F, Janssen J, et al. Learning the distribution of single-cell chromosome conformations in bacteria reveals emergent order across genomic scales. Nat Commun, 2021, 12(1): 1963.
|
23. |
Zha M S, Wang N, Zhang C Y, et al. Inferring single-cell 3D chromosomal structures based on the Lennard-Jones potential. Int J Mol Sci, 2021, 22(11): 5914.
|
24. |
Galitsyna A A, Gelfand M S. Single-cell Hi-C data analysis: safety in numbers. Brief Bioinform, 2021, 22(6): bbab316.
|
25. |
Polovnikov K, Gorsky A, Nechaev S, et al. Non-backtracking walks reveal compartments in sparse chromatin interaction networks. Sci Rep-UK, 2020, 10(1): 11398.
|
26. |
Li X, Zeng G J, Li A S, et al. DeTOKI identifies and characterizes the dynamics of chromatin TAD-like domains in a single cell. Genome Biol, 2021, 22(1): 1-26.
|
27. |
Ye Y S, Zhang S H, Gao L, et al. Deciphering hierarchical chromatin domains and preference of genomic position forming boundaries in single mouse embryonic stem cells. Adv Sci, 2023, 10(8): 2205162.
|
28. |
Zhang S S, Plummer D, Lu L N, et al. DeepLoop robustly maps chromatin interactions from sparse allele-resolved or single-cell Hi-C data at kilobase resolution. Nat Genet, 2022, 54(7): 1013-1025.
|
29. |
Zhou J, Ma J, Chen Y, et al. Robust single-cell Hi-C clustering by convolution-and random-walk–based imputation. Proc Natl Acad Sci U S A, 2019, 116(28): 14011-14018.
|
30. |
Liu T, Wang Z. scHiCEmbed: Bin-specific embeddings of single-cell Hi-C data using graph auto-encoders. Genes, 2022, 13(6): 1048.
|
31. |
Xie Q, Han C G, Jin V, et al. HiCImpute: A Bayesian hierarchical model for identifying structural zeros and enhancing single cell Hi-C data. Plos Comput Biol, 2022, 18(6): e1010129.
|
32. |
Liu Q, Zeng W W, Zhang W, et al. Deep generative modeling and clustering of single cell Hi-C data. Brief Bioinform, 2023, 24(1): bbac494.
|
33. |
Ye Y S, Gao L, Zhang S H. Circular trajectory reconstruction uncovers cell-cycle progression and regulatory dynamics from single-cell Hi-C maps. Adv Sci, 2019, 6(23): 1900986.
|
34. |
Bonora G, Ramani V, Singh R, et al. Single-cell landscape of nuclear configuration and gene expression during stem cell differentiation and X inactivation. Genome Biol, 2021, 22(1): 279.
|
35. |
Lyu H Q, Liu E H, Wu Z F, et al. scHiCPTR: unsupervised pseudotime inference through dual graph refinement for single-cell Hi-C data. Bioinformatics, 2022, 38(23): 5151-5159.
|
36. |
Kim H J, Ioshikhes I, Bonora G, et al. Capturing cell type-specific chromatin compartment patterns by applying topic modeling to single-cell Hi-C data. Plos Comput Biol, 2020, 16(9): e1008173.
|
37. |
Wolff J, Backofen R, Gruning B. Robust and efficient single-cell Hi-C clustering with approximate k-nearest neighbor graphs. Bioinformatics, 2021, 37(22): 4006-4013.
|
38. |
Zhang R C, Zhou T M, Ma J. Multiscale and integrative single-cell Hi-C analysis with Higashi. Nat Biotechnol, 2022, 40(2): 254-261.
|
39. |
Zhang R C, Zhou T M, Ma J. Ultrafast and interpretable single-cell 3D genome analysis with Fast-Higashi. Cell Syst, 2022, 13(10): 798-807.
|
40. |
Wu H, Wu Y F, Jiang Y H, et al. scHiCStackL: a stacking ensemble learning-based method for single-cell Hi-C classification using cell embedding. Brief Bioinform, 2022, 23(1): bbab396.
|
41. |
Zhou X, Shi Z, Wu Y, et al. scHiCSC: A novel single-cell Hi-C clustering framework by contact-weight-based smoothing and feature fusion// 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). Las Vegas: IEEE, 2022: 44-50.
|
42. |
Wagner D E, Klein A M. Lineage tracing meets single-cell omics: opportunities and challenges. Nat Rev Genet, 2020, 21(7): 410-427.
|
43. |
Liu J, Qu S, Zhang T, et al. Applications of single-cell omics in tumor immunology. Front Immunol, 2021, 12: 697412.
|
44. |
Nam A S, Chaligne R, Landau D A. Integrating genetic and non-genetic determinants of cancer evolution by single-cell multi-omics. Nat Rev Genet, 2021, 22(1): 3-18.
|
45. |
Khateb M, Perovanovic J, Ko K D, et al. Transcriptomics, regulatory syntax, and enhancer identification in mesoderm-induced ESCs at single-cell resolution. Cell Rep, 2022, 40(7): 111219.
|
46. |
Wang X, Luan Y, Yue F. EagleC: A deep-learning framework for detecting a full range of structural variations from bulk and single-cell contact maps. Sci Adv, 2022, 8(24): eabn9215.
|
47. |
Lin D, Xu W Z, Hong P, et al. Decoding the spatial chromatin organization and dynamic epigenetic landscapes of macrophage cells during differentiation and immune activation. Nat Commun, 2022, 13(1): 5857.
|