1. |
Banino A, Barry C, Uria B, et al. Vector-based navigation using grid-like representations in artificial agents. Nature, 2018, 557(7705): 429-433.
|
2. |
Wu Q, Gong X, Xu K, et al. Towards target-driven visual navigation in indoor scenes via generative imitation learning. IEEE Robot Autom Lett, 2020, 6(1): 175-182.
|
3. |
Ormond J, O’Keefe J. Hippocampal place cells have goal-oriented vector fields during navigation. Nature, 2022, 607(7920): 741-746.
|
4. |
O’Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res, 1971, 34(1): 171-175.
|
5. |
Hafting T, Fyhn M, Molden S, et al. Microstructure of a spatial map in the entorhinal cortex. Nature, 2005, 436(7052): 801-806.
|
6. |
Solstad T, Boccara C N, Kropff E, et al. Representation of geometric borders in the entorhinal cortex. Science, 2008, 322(5909): 1865-1868.
|
7. |
Taube J S, Muller R U, Ranck J B. Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations. J Neurosci, 1990, 10(2): 436-447.
|
8. |
Aziz A, Sreeharsha P S S, Natesh R, et al. An integrated deep learning‐based model of spatial cells that combines self‐motion with sensory information. Hippocampus, 2022, 32(10): 716-730.
|
9. |
Monteiro J, Pedro A, Silva A J. A Gray Code model for the encoding of grid cells in the Entorhinal Cortex. Neural Comput Appl, 2022, 34(3): 2287-2306.
|
10. |
Li T, Arleo A, Sheynikhovich D. Modeling place cells and grid cells in multi-compartment environments: Entorhinal–hippocampal loop as a multisensory integration circuit. Neur Netw, 2020, 121: 37-51.
|
11. |
Patai E Z, Javadi A H, Ozubko J D, et al. Hippocampal and retrosplenial goal distance coding after long-term consolidation of a real-world environment. Cereb Cortex, 2019, 29(6): 2748-2758.
|
12. |
Javadi A H, Emo B, Howard L R, et al. Hippocampal and prefrontal processing of network topology to simulate the future. Nat Commun, 2017, 8(1): 1-11.
|
13. |
Yu N, Zhai Y, Yuan Y, et al. A bionic robot navigation algorithm based on cognitive mechanism of hippocampus. IEEE Trans Autom Sci Eng, 2019, 16(4): 1640-1652.
|
14. |
Zou Q, Cong M, Liu D, et al. Robotic episodic cognitive learning inspired by hippocampal spatial cells. IEEE Robot Autom Lett, 2020, 5(4): 5573-5580.
|
15. |
Liu D, Lyu Z, Zou Q, et al. Robotic navigation based on experiences and predictive map inspired by spatial cognition. IEEE ASME Trans Mechatron, 2022, 27(6): 4316-4326.
|
16. |
Oudeyer P Y, Kaplan F. Intelligent adaptive curiosity: A source of self-development// Procedings of the International Workshop on Epigenetic Robotics. Lund: Lund University Cognitive Studies, 2004: 127-130.
|
17. |
张晓平, 阮晓钢, 肖尧, 等. 基于内发动机机制的移动机器人自主路径规划方法. 控制与决策, 2018, 33(9): 1605-1611.
|
18. |
阮晓钢, 张家辉, 黄静, 等. 一种结合内在动机理论的移动机器人环境认知模型. 控制与决策, 2021, 36(9): 2211-2217.
|
19. |
Kulvicius T, Tamosiunaite M, Ainge J, et al. Odor supported place cell model and goal navigation in rodents. J Comput Neurosci, 2008, 25(3): 481-500.
|
20. |
Frémaux N, Sprekeler H, Gerstner W. Reinforcement learning using a continuous time actor-critic framework with spiking neurons. PLoS Comput Biol, 2013, 9(4): e1003024.
|
21. |
Brzosko Z, Zannone S, Schultz W, et al. Sequential neuromodulation of Hebbian plasticity offers mechanism for effective reward-based navigation. Elife, 2017, 6: e27756.
|
22. |
Ang G W Y, Tang C S, Hay Y A, et al. The functional role of sequentially neuromodulated synaptic plasticity in behavioural learning. PLoS Comput Biol, 2021, 17(6): e1009017.
|
23. |
于乃功, 廖诣深. 基于鼠脑内嗅—海马认知机制的移动机器人空间定位模型. 生物医学工程学杂志, 2022, 39(2): 217-227.
|
24. |
Bjerknes T L, Moser E I, Moser M B. Representation of geometric borders in the developing rat. Neuron, 2014, 82(1): 71-78.
|
25. |
Adam S, Busoniu L, Babuska R. Experience replay for real-time reinforcement learning control. IEEE Trans Syst Man Cybern, 2011, 42(2): 201-212.
|