1. |
张物华, 李锵, 关欣. 基于多尺度卷积神经网络的X光图像中肺炎病灶检测. 激光与光电子学进展, 2020, 57(8): 179-186.
|
2. |
黄欣, 方钰, 顾梦丹. 基于卷积神经网络的 X 线胸片疾病分类研究. 系统仿真学报, 2020, 32(6): 1188-1194.
|
3. |
Messina P, Pino P, Parra D, et al. A survey on deep learning and explainability for automatic report generation from medical images. ACM Computing Surveys, 2020, arXiv: 2010.10563.
|
4. |
Rajpurkar P, Irvin J, Zhu K, et al. CheXNet: radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv preprint, 2017, arXiv: 1711.05225.
|
5. |
Demner-Fushman D, Kohli M D, Rosenman M B, et al. Preparing a collection of radiology examinations for distribution and retrieval. Journal of the American Medical Informatics Association, 2016, 23(2): 304-310.
|
6. |
Vinyals O, Toshev A, Bengio S, et al. Show and tell: a neural image caption generator//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2015: 3156-3164.
|
7. |
Li C Y, Liang X, Hu Z, et al. Hybrid retrieval-generation reinforced agent for medical image report generation//Proceedings of the 32nd International Conference on Neural Information Processing Systems(NIPS’18), 2018: 1537-1547.
|
8. |
Han K, Wang Y, Chen H, et al. A survey on vision transformer. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 87-110.
|
9. |
He X, Yang Y, Shi B, et al. VD-SAN: visual-densely semantic attention network for image caption generation. Neurocomputing, 2019, 328: 48-55.
|
10. |
Alfarghaly O, Khaled R, Elkorany A, et al. Automated radiology report generation using conditioned transformers. Informatics in Medicine Unlocked, 2021, 24: 100557.
|
11. |
Valanarasu J M J, Oza P, Hacihaliloglu I, et al. Medical transformer: gated axial-attention for medical image segmentation//Medical Image Computing and Computer Assisted Intervention (MICCAI 2021), Springer, 2021: 36-46.
|
12. |
Hou B, Kaissis G, Summers R M, et al. Ratchet: medical transformer for chest X-ray diagnosis and reporting//Medical Image Computing and Computer Assisted Intervention (MICCAI 2021), Springer, 2021: 293-303.
|
13. |
Srinivasan P, Thapar D, Bhavsar A, et al. Hierarchical X-ray report generation via pathology tags and multi head attention//Proceedings of the Asian Conference on Computer Vision (ACCV 2020), Springer, 2020: 600-616.
|
14. |
Liu F, Wu X, Ge S, et al. Exploring and distilling posterior and prior knowledge for radiology report generation// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2021: 13753-13762.
|
15. |
Li J, Li S, Hu Y, et al. A self-guided framework for radiology report generation//Medical Image Computing and Computer Assisted Intervention (MICCAI 2022), Springer, 2022: 588-598.
|
16. |
You D, Liu F, Ge S, et al. Aligntransformer: Hierarchical alignment of visual regions and disease tags for medical report generation.//Medical Image Computing and Computer Assisted Intervention (MICCAI 2021), Springer, 2021: 72-82.
|
17. |
Chen Z, Shen Y, Song Y, et al. Cross-modal memory networks for radiology report generation// The Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP 2021), 2022. arXiv: 2204.13258.
|
18. |
Wang X, Peng Y, Lu L, et al. ChestX-ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2017: 2097-2106.
|
19. |
Johnson A E W, Pollard T J, Berkowitz S J, et al. MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports. Scientific Data, 2019, 6(1): 317.
|
20. |
Liu Z, Lin Y, Cao Y, et al. Swin transformer: hierarchical vision transformer using shifted windows// Proceedings of the IEEE/CVF international conference on computer vision, IEEE, 2021, 10012-10022.
|
21. |
Devlin J, Chang M W, Lee K, et al. Bert: pre-training of deep bidirectional transformers for language understanding// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, ACL Anthology, 2019: 4171-4186.
|
22. |
Silva Barbon R, Akabane A T. Towards transfer learning techniques-BERT, DistilBERT, BERTimbau, and DistilBERTimbau for automatic text classification from different languages: a case study. Sensors, 2022, 22(21): 8184.
|
23. |
Chen Z, Song Y, Chang T H, et al. Generating radiology reports via memory-driven transformer// Conference on Empirical Methods in Natural Language Processing (EMNLP-2020), 2020. arXiv: 2010.16056.
|
24. |
Lee D, Tian Z, Xue L, et al. Enhancing content preservation in text style transfer using reverse attention and conditional layer normalization// The Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP 2021), 2021. arXiv: 2108.00449.
|
25. |
Lee J, Yoon W, Kim S, et al. BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics, 2020, 36(4): 1234-1240.
|
26. |
Yang S, Wu X, Ge S, et al. Radiology report generation with a learned knowledge base and multi-modal alignment. Medical Image Analysis, 2023, 86: 102798.
|
27. |
Papineni K, Roukos S, Ward T, et al. BLEU: a method for automatic evaluation of machine translation// Proceedings of the Annual Meeting of the Association for Computational Linguistics, ACL, 2002: 311-318.
|
28. |
Banerjee S, Lavie A. METEOR: an automatic metric for MT evaluation with improved correlation with human judgments//Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization, Association for Computational Linguistics, 2005: 65-72.
|
29. |
Lin C Y. ROUGE: a package for automatic evaluation of summaries. Text summarization branches out, Association for Computational Linguistics, 2004: 74-81.
|
30. |
He Tong, Zhang Zhi, Zhang Hang, et al. Bag of tricks for image classification with convolutional neural networks// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2019: 558-567.
|
31. |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2016: 770-778.
|
32. |
Huang Gao, Liu Zhuang,Van Der Maaten L, et al. Densely connected convolutional networks// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2017: 2261-2269.
|
33. |
Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: transformers for image recognition at scale//International Conference on Learning Representations, ICLR, 2021: 1-22.
|
34. |
Selvaraju RR, Cogswell M, Das A, et al. Grad-cam: Visual explanations from deep networks via gradient-based localization.//Proceedings of the IEEE International Conference on Computer Vision, IEEE, 2017: 618-626.
|