1. |
陈芝君, 马建, 唐娜, 等. 中国帕金森病疾病负担变化趋势分析及预测. 中国慢性病预防与控制, 2022, 30(9): 649-654..
|
2. |
Rusz J, Tykalová T, Klempíř J, et al. Effects of dopaminergic replacement therapy on motor speech disorders in Parkinson’s disease: longitudinal follow-up study on previously untreated patients. Journal of Neural Transmission, 2016, 123(4): 379-387..
|
3. |
Walsh B, Smith A. Basic parameters of articulatory movements and acoustics in individuals with Parkinson's disease. Movement Disorders, 2012, 27(7): 843-850..
|
4. |
Zhang Y, Du H, Chen H, et al. Characteristic of voice in Parkinson disease. Journal of Audiology and Speech Pathology, 2001, 9(2): 84-86..
|
5. |
王娟, 徐志京. HR-DCGAN方法的帕金森声纹样本扩充及识别研究. 小型微型计算机系统, 2019, 40(9): 2026-2032..
|
6. |
Hireš M, Gazda M, Drotár P, et al. Convolutional neural network ensemble for Parkinson's disease detection from voice recordings. Computers in Biology and Medicine, 2022, 141: 105021..
|
7. |
Sakar B E, Isenkul M E, Sakar C O, et al. Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings. IEEE Journal of Biomedical and Health Informatics, 2013, 17(4): 828-834..
|
8. |
Daoudi K, Das B, de Saint Victor S M, et al. A comparative study on vowel articulation in Parkinson’s disease and multiple system atrophy//The 23rd Annual Conference of the International Speech Communication Association, 2022: 1-26..
|
9. |
Almeida J S, Rebouças Filho P P, Carneiro T, et al. Detecting Parkinson’s disease with sustained phonation and speech signals using machine learning techniques. Pattern Recognition Letters, 2019, 125: 55-62..
|
10. |
Benba A, Jilbab A, Hammouch A, et al. Voiceprints analysis using MFCC and SVM for detecting patients with Parkinson's disease//2015 International conference on electrical and information technologies. IEEE, 2015: 300-304..
|
11. |
Wu K, Zhang D, Lu G, et al. Learning acoustic features to detect Parkinson’s disease. Neurocomputing, 2018, 318: 102-108..
|
12. |
Xu Z, Wang R, Wang J, et al. Parkinson’s disease detection based on spectrogram-deep convolutional generative adversarial network sample augmentation. IEEE Access, 2020, 8: 206888-206900..
|
13. |
Liu Z, Mao H, Wu C Y, et al. A Convnet for the 2020s//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans: IEEE, 2022: 11976-11986..
|
14. |
Karani N, Erdil E, Chaitanya K, et al. Test-time adaptable neural networks for robust medical image segmentation. Medical Image Analysis, 2021, 68: 101907..
|
15. |
Chen C, Hammernik K, Ouyang C, et al. Cooperative training and latent space data augmentation for robust medical image segmentation//Medical Image Computing and Computer Assisted Intervention, Strasbourg: Springer, 2021: 149-159..
|
16. |
Goodfellow I, Pouget-abadie J, Mirza M, et al. Generative adversarial networks//Communications of the ACM, 2020, 63(11): 139-144..
|
17. |
陈英, 林洪平, 张伟, 等. 医学图像数据集扩充方法研究进展. 生物医学工程学杂志, 2023, 40(1): 185-192..
|
18. |
Frid-Adar M, Diamant I, Klang E, et al. GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing, 2018, 321: 321-331..
|
19. |
Chuquicusma M J M, Hussein S, Burt J, et al. How to fool radiologists with generative adversarial networks? a visual turing test for lung cancer diagnosis//15th International Symposium on Biomedical Imaging. IEEE, 2018: 240-244..
|
20. |
黄宏宇, 谷子丰. 一种基于自注意力机制的文本图像生成对抗网络. 重庆大学学报, 2020, 43(3): 55-61..
|
21. |
李秋丽, 马力. 结合频谱规范化与自注意力机制的DCGAN研究. 计算机应用与软件, 2021, 38(2): 227-232,290..
|
22. |
甘岚, 沈鸿飞, 王瑶, 等. 基于改进DCGAN的数据增强方法. 计算机应用, 2021, 41(5): 1305-1313..
|
23. |
祝俊辉, 周贤勇, 徐明升, 等. 改进DCGAN数据增强的番茄叶子病害图像识别. 无线电工程, 2023, 53(6): 1235-1241..
|
24. |
Xie S, Qian W. Multi-head mutual self-attention generative adversarial network for texture synthesis//7th International Conference on Intelligent Computing and Signal Processing. IEEE, 2022: 1484-1487..
|
25. |
MiyatoT, Ktaoka T, Koyama M, et al. Spectral normalization for generative adversarial network. arXiv preprint, 2018, arXiv: 1802.05957..
|
26. |
Arjovsky M, Chintala S, Bottou L. Wasserstein generative adversarial networks//International Conference on Machine Learning. PMLR, 2017: 214-223..
|
27. |
Gulrajani I, Ahmed F, Arjovsky M, et al. Improved training of Wasserstein GANs// Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS’17), 2017: 5767-5777..
|
28. |
于耀淋, 张景异, 雎付佳. 基于生成式对抗网络的人脸图像生成. 沈阳理工大学学报, 2022, 41(5): 29-33..
|
29. |
Zhang H, Goodfellow I, Metaxas D, et al. Self-attention generative adversarial networks//International Conference on Machine Learning. PMLR, 2019: 7354-7363..
|
30. |
李祚林, 李晓辉, 马灵玲, 等. 面向无参考图像的清晰度评价方法研究. 遥感技术与应用, 2011, 26(2): 239-246..
|