1. |
中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2021概要. 中国循环杂志, 2022, 37(6): 553-578.
|
2. |
Painchaud N, Skandarani Y, Judge T, et al. Cardiac segmentation with strong anatomical guarantees. IEEE Transactions on Medical Imaging, 2020, 39(11): 3703-3713.
|
3. |
Zhang J P, Wang Y X, Chen L J, et al. Dual-branch TransV-Net for 3D echocardiography segmentation. IEEE Transactions on Industrial Informatics, 2023, DOI: 10.1109/TII.2023.3249904.
|
4. |
Gahungu N, Trueick R, Bhat S, et al. Current challenges and recent updates in artificial intelligence and echocardiography. Current Cardiovascular Imaging Reports, 2020, 13: 5.
|
5. |
Carneiro G, Nascimento J C. Combining multiple dynamic models and deep learning architectures for tracking the left ventricle endocardium in ultrasound data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11): 2592-2607.
|
6. |
Leclerc S, Smistad E, Pedrosa J, et al. Deep learning for segmentation using an open large-scale dataset in 2D echocardiography. IEEE Transactions on Medical Imaging, 2019, 38(9): 2198-2210.
|
7. |
Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.
|
8. |
Moradi S, Oghli M G, Alizadehasl A, et al. MFP-Unet: a novel deep learning based approach for left ventricle segmentation in echocardiography. Physica Medica, 2019, 67: 58-69.
|
9. |
Leclerc S, Smistad E, Østvik A, et al. LU-Net: a multistage attention network to improve the robustness of segmentation of left ventricular structures in 2-D echocardiography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67(12): 2519-2530.
|
10. |
Bullock J, Cuesta-Lázaro C, Quera-Bofarull A. XNet: a convolutional neural network (CNN) implementation for medical x-ray image segmentation suitable for small datasets//Medical Imaging 2019: Biomedical Applications in Molecular, Structural, and Functional Imaging. SPIE, 2019. DOI: 10.1117/12.2512451.
|
11. |
Du X, Xu X, Liu H, et al. TSU-net: two-stage multi-scale cascade and multi-field fusion U-net for right ventricular segmentation. Computerized Medical Imaging and Graphics, 2021, 93: 101971.
|
12. |
Leclerc S, Smistad E, Grenier T, et al. RU-Net: a refining segmentation network for 2D echocardiography//2019 IEEE International Ultrasonics Symposium (IUS). Glasgow: IEEE, 2019: 1160-1163.
|
13. |
Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259.
|
14. |
姚庆安,张鑫,刘力鸣,等. 融合注意力机制和多尺度特征的图像语义分割. 吉林大学学报(理学版), 2022, 60(6): 1383-1390.
|
15. |
Hu J, Shen L, Sun G, et al. Squeeze-and-excitation networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023.
|
16. |
Woo S, Park J, Lee J Y, et al. CBAM: convolutional block attention module// Proceedings of the European conference on computer vision (ECCV). 2018: 3-19. DOI: 10.1007/978-3-030-01234-2_1.
|
17. |
Song Y, Du X, Zhang Y, et al. Two-stage segmentation network with feature aggregation and multi-level attention mechanism for multi-modality heart images. Computerized Medical Imaging and Graphics, 2022, 97: 102054.
|
18. |
Guo L, Lei B, Chen W, et al. Dual attention enhancement feature fusion network for segmentation and quantitative analysis of paediatric echocardiography. Medical Image Analysis, 2021, 71: 102042.
|
19. |
Zhao X, Zhang P, Song F, et al. Prior attention network for multi-lesion segmentation in medical images. IEEE Transactions on Medical Imaging, 2022, 41(12): 3812-3823.
|
20. |
Gu R, Wang G, Song T, et al. CA-Net: Comprehensive attention convolutional neural networks for explainable medical image segmentation. IEEE Transactions on Medical Imaging, 2021, 40(2): 699-711.
|
21. |
Oktay O, Schlemper J, Folgoc L L, et al. Attention U-net: learning where to look for the pancreas//International Conference on Medical Image Computing and Computer-assisted Intervention. Cham: Springer, 2018: 369-377.
|
22. |
Zhou Z, Rahman Siddiquee M M, Tajbakhsh N, et al. UNet++: a nested U-Net architecture for medical image segmentation//Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support (DLMIA 2018), Cham: Springer, 2018, 11045: 3-11.
|
23. |
Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation//Proceedings of the European conference on computer vision (ECCV). 2018: 801-818.
|
24. |
Amer A, Ye X, Janan F. ResDUnet: a deep learning-based left ventricle segmentation method for echocardiography. IEEE Access, 2021, 9: 159755-159763.
|