• Department of Biomedical Engineering and Imaging Medicine, Army Medical University, Chongqing 400038, P. R. China;
CHEN Mingsheng, Email: chenms83@tmmu.edu.cn
Export PDF Favorites Scan Get Citation

The main magnetic field, generated by the excitation coil of the magnetic induction phase shift technology detection system, is mostly dispersed field with small field strength, and the offset effect needs to be further improved, which makes the detection signal weak and the detection system difficult to achieve quantitative detection, thus the technology is rarely used in vivo experiments and clinical trials. In order to improve problems mentioned above, a new Helmholtz birdcage sensor was designed. Stimulation experiment was carried out to analyze the main magnetic field in aspects of intensity and magnetic distribution, then different bleeding volume and bleeding rates experiments were conducted to compared with traditional sensors. The results showed that magnetic field intensity in detection region was 2.5 times than that of traditional sensors, cancellation effect of the main magnetic field was achieved, the mean value of phase difference of 10 mL rabbit blood was (–3.34 ± 0.21)°, and exponential fitting adjusted R2 between phase difference and bleeding volumes and bleeding rates were both 0.99. The proposed Helmholtz birdcage sensor has a uniform magnetic field with a higher field strength, enable more accurate quantification of hemorrhage and monitored change of bleeding rates, providing significance in magnetic induced technology research for cerebral hemorrhage detection.

Citation: LIU Jie, YAN Lian, QIN Mingxin, ZHANG Haisheng, CHEN Mingsheng. Magnetic induced phase shift detection system based on a novel sensor for cerebral hemorrhage. Journal of Biomedical Engineering, 2024, 41(3): 455-460. doi: 10.7507/1001-5515.202305048 Copy

  • Previous Article

    Dielectric properties of tidal volume changes in rabbit lung tissue in the 100 MHz~1 GHz band
  • Next Article

    Precise measurement of human heart rate based on multi-channel radar data fusion