1. |
Lipovac D, Žitnik J, Burnard M D. A pilot study examining the suitability of the mental arithmetic task and single-item measures of affective states to assess affective, physiological, and attention restoration at a wooden desk. Journal of Wood Science, 2022, 68: 35.
|
2. |
Lee K F A, Chan E, Car J, et al. Lowering the sampling rate: Heart rate response during cognitive fatigue. Biosensors, 2022, 12(5): 315.
|
3. |
Matsuura Y, Ochi G. The potential of heart rate variability monitoring for mental health assessment in top wheel gymnastics athletes: a single case design. Applied Psychophysiology and Biofeedback, 2023, 48(3): 335-343.
|
4. |
Wang H, Han M, Avouka T, et al. Research on fatigue identification methods based on low-load wearable ECG monitoring devices. Review of Scientific Instruments, 2023, 94(4): 045103.
|
5. |
Lu K, Sjörs Dahlman A, Karlsson J, et al. Detecting driver fatigue using heart rate variability: a systematic review. Accident Analysis & Prevention, 2022, 178: 106830.
|
6. |
Matuz A, van der Linden D, Darnai G, et al. Generalisable machine learning models trained on heart rate variability data to predict mental fatigue. Scientific Reports, 2022, 12(1): 20023.
|
7. |
Mehmood I, Li H, Qarout Y, et al. Deep learning-based construction equipment operators’ mental fatigue classification using wearable EEG sensor data. Advanced Engineering Informatics, 2023, 56: 101978.
|
8. |
Zorzos I, Kakkos I, Miloulis S T, et al. Applying neural networks with time-frequency features for the detection of mental fatigue. Applied Sciences, 2023, 13(3): 1512.
|
9. |
Wang F, Wan Y, Li M, et al. Recent advances in fatigue detection algorithm based on EEG. Intelligent Automation & Soft Computing, 2023, 35(3): 3573-3586.
|
10. |
Ettahiri H, Vicente J M F, Fechtali T. EEG signals in mental fatigue detection: a comparing study of machine learning technics vs deep learning//International Work-Conference on the Interplay Between Natural and Artificial Computation. Cham: Springer International Publishing, 2022: 625-633.
|
11. |
Ye C, Yin Z, Zhao M, et al. Identification of mental fatigue levels in a language understanding task based on multi-domain EEG features and an ensemble convolutional neural network. Biomedical Signal Processing and Control, 2022, 72: 103360.
|
12. |
Zhang Y, Chen Y, Pan Z. A deep temporal model for mental fatigue detection//2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2018: 1879-1884.
|
13. |
Schmidt P, Reiss A, Duerichen R, et al. Introducing wesad, a multimodal dataset for wearable stress and affect detection//Proceedings of the 20th ACM International Conference on Multimodal Interaction. Boulder: ICMI, 2018: 400-408.
|
14. |
毛玲, 孙即祥, 张国敏, 等. 基于形态滤波的心电信号基线矫正算法. 信号处理, 2008, 24(4): 582-585.
|
15. |
王晓娜, 宋世德. 基于 NI ELVISⅡ 平台设计 Bainter 陷波器抑制工频干扰实验. 实验室科学, 2020, 23(4): 35-38.
|
16. |
梁莹, 马小龙, 朝乐蒙, 等. 基于经验小波变换的心电信号基线漂移噪声去除预处理方法研究. 医疗卫生装备, 2022, 43(6): 7-13.
|
17. |
Wang Y, Deepu C J, Lian Y. A computationally efficient QRS detection algorithm for wearable ECG sensors//2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2011: 5641-5644.
|
18. |
邵宁宁. 基于卷积神经网络的心律失常分类研究. 秦皇岛: 燕山大学, 2021.
|
19. |
武东辉, 许静, 陈继斌等. 基于融合注意力机制与CNN-LSTM的人体行为识别算法. 科学技术与工程, 2023, 23(2): 681-689.
|
20. |
郑涛, 刘辉, 陈薇, 等. 基于CNN-LSTM的水泥熟料f-CaO预测模型. 控制工程, 2022. DOI: 10.14107/j.cnki.kzgc.20220261.
|
21. |
王愈轩, 刘尔佳, 黄永章. 基于CNN-LSTM-lightGBM组合的超短期风电功率预测方法. 科学技术与工程, 2022, 22(36): 16067-16074.
|