1. |
Sayed A, Munir M, Bahbah EI. Aortic dissection: A review of the pathophysiology, management and prospective advances. Curr Cardiol Rev, 2021, 17(4): 87-101.
|
2. |
陈永昆, 张石龙, 张顺利, 等. 主动脉夹层发病的影响因素分析. 临床医学进展, 2023, 13(6): 9541-9550.
|
3. |
Hahn L D, Baeumler K, Hsiao A. Artificial intelligence and machine learning in aortic disease. Curr Opin Cardiol, 2021, 36(6): 695-703.
|
4. |
Fetnaci N, Łubniewski P, Miguel B, et al. 3D segmentation of the true and false lumens on CT aortic dissection images// Three-Dimensional Image Processing (3DIP) and Applications 2013. Burlingame: SPIE, 2013, 8650: 176-190.
|
5. |
Duan Xiaojie, Shi Meichen, Wang Jianming, et al. Segmentation of the aortic dissection from CT images based on spatial continuity prior model// 2016 8th International Conference on Information Technology in Medicine and Education (ITME). Fuzhou: IEEE, 2016: 275-280.
|
6. |
Lee N, Tek H, Laine A F. True-false lumen segmentation of aortic dissection using multi-scale wavelet analysis and generative-discriminative model matching// Medical Imaging 2008: Computer-Aided Diagnosis. San Diego: SPIE, 2008, 6915: 878-888.
|
7. |
呼亚萍, 孔韦韦, 李萌, 等. 基于边缘检测全变分模型的图像去噪方法. 现代电子技术, 2021, 44(5): 52-56.
|
8. |
Zhu Z, Xia Y, Shen W, et al. A 3D coarse-to-fine framework for automatic pancreas segmentation. arXiv preprint arXiv: 2017: 1712.00201.
|
9. |
吴春彪. 基于两阶段全卷积神经网络的冠状动脉分割研究. 计算机科学与应用, 2022, 12(4): 828-834.
|
10. |
Man Y, Huang Y, Feng J, et al. Deep Q learning driven CT pancreas segmentation with geometry-aware U-Net. IEEE Trans Med Imaging, 2019, 38(8): 1971-1980.
|
11. |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv, 2014: 1409.1556.
|
12. |
Le N, Rathour V S, Yamazaki K, et al. Deep reinforcement learning in computer vision: a comprehensive survey. Artif Intell Rev, 2022, 55: 2733-2819.
|
13. |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
|
14. |
Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation// International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich: Springer International Publishing, 2015: 234-241.
|
15. |
Chen J, Lu Y, Yu Q, et al. Transunet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv, 2021: 2102.04306.
|
16. |
Cao H, Wang Y, Chen J, et al. Swin-Unet: Unet-like pure transformer for medical image segmentation// European Conference on Computer Vision. Tel Aviv: Springer, Cham, 2022: 205-218.
|
17. |
Wang H, Xie S, Lin L, et al. Mixed transformer U-net for medical image segmentation// ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Singapore: IEEE, 2022: 2390-2394.
|
18. |
Wang X, Wang S, Liang X, et al. Deep reinforcement learning: A survey. IEEE Trans Neural Netw Learn Syst, 2022, 35(4): 5064-5078.
|
19. |
Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning. Nature, 2015, 518(7540): 529-533.
|
20. |
Zhao Z. Variants of Bellman equation on reinforcement learning problems// 2nd International Conference on Artificial Intelligence, Automation, and High-Performance Computing (AIAHPC 2022). Zhuhai: SPIE, 2022, 12348: 467-478.
|
21. |
Hasselt H, Guez A, Silver D. Deep reinforcement learning with double Q-Learning// Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. Phoenix: AAAI Press, 2016: 2094-2100.
|
22. |
Wang Z, Schaul T, Hessel M, et al. Dueling network architectures for deep reinforcement learning// International Conference on Machine Learning. New York City: PMLR, 2016: 1995-2003.
|
23. |
Hausknecht M, Stone P. Deep recurrent Q-learning for partially observable MDPs// 2015 AAAI Fall Symposium Series. Arlington: AAAI, 2015: 29-37.
|
24. |
Xiong J, Po L M, Cheung K W, et al. Edge-sensitive left ventricle segmentation using deep reinforcement learning. Sensors, 2021, 21(7): 2375.
|
25. |
Yao Z, Xie W, Zhang J, et al. ImageTBAD: A 3D computed tomography angiography image dataset for automatic segmentation of type-B aortic dissection. Front Physiol, 2021, 12: 732711.
|
26. |
dos Santos Mignon A, da Rocha R L A. An adaptive implementation of ε-greedy in reinforcement learning. Procedia Comput Sci, 2017, 109: 1146-1151.
|