1. |
Han B, Zheng R, Zeng H, et al. Cancer incidence and mortality in China, 2022. J Natl Cancer Center, 2024. DOI: 10.1016/j.jncc.2024.01.006.
|
2. |
Li M Y, Liu L Z, Dong M. Progress on pivotal role and application of exosome in lung cancer carcinogenesis, diagnosis, therapy and prognosis. Mol Cancer, 2021, 20: 1-22.
|
3. |
Bowes K, Jovanoski N, Brown A E, et al. Treatment patterns and survival of patients with locoregional recurrence in early-stage NSCLC: a literature review of real-world evidence. Med Oncol, 2022, 40(1): 4.
|
4. |
Woodard G A, Jones K D, Jablons D M, et al. Lung cancer staging and prognosis. Cancer Treat Res, 2016: 47-75.
|
5. |
Lee G, Lee H Y, Park H, et al. Radiomics and its emerging role in lung cancer research, imaging biomarkers and clinical management: State of the art. Eur J Radiol, 2017, 86: 297-307.
|
6. |
Xie D, Wang T T, Huang S J, et al. Radiomics nomogram for prediction disease-free survival and adjuvant chemotherapy benefits in patients with resected stage I lung adenocarcinoma. Transl Lung Cancer Res, 2020, 9(4): 1112.
|
7. |
Kirienko M, Cozzi L, Antunovic L, et al. Prediction of disease-free survival by the PET/CT radiomic signature in non-small cell lung cancer patients undergoing surgery. Eur J Nucl Med Mol Imaging, 2018, 45: 207-217.
|
8. |
Chen H, Liang M, Li X, et al. An individualised radiomics composite model predicting prognosis of stage 1 solid lung adenocarcinoma. Clin Radiol, 2020, 75(7): 562.e11-562.e19.
|
9. |
Wang T, Deng J, She Y, et al. Radiomics signature predicts the recurrence-free survival in stage I non-small cell lung cancer. Ann Thorac Surg, 2020, 109(6): 1741-1749.
|
10. |
Berenguer R, Pastor-Juan M D R, Canales-Vázquez J, et al. Radiomics of CT features may be nonreproducible and redundant: influence of CT acquisition parameters. Radiology, 2018, 288(2): 407-415.
|
11. |
Avanzo M, Stancanello J, Pirrone G, et al. Radiomics and deep learning in lung cancer. Strahlenther Onkol, 2020, 196: 879-887.
|
12. |
Gao Y, Zhou R, Lyu Q. Multiomics and machine learning in lung cancer prognosis. J Thorac Dis, 2020, 12(8): 4531-4535.
|
13. |
Cong L, Feng W, Yao Z, et al. Deep learning model as a new trend in computer-aided diagnosis of tumor pathology for lung cancer. J Cancer, 2020, 11(12): 3615-3622.
|
14. |
Wang P, Li Y, Reddy C K. Machine learning for survival analysis: A survey. ACM Comput Surv (CSUR), 2019, 51(6): 1-36.
|
15. |
Hosny A, Parmar C, Coroller T P, et al. Deep learning for lung cancer prognostication: a retrospective multi-cohort radiomics study. PLoS Med, 2018, 15(11): e1002711.
|
16. |
Xu Y, Hosny A, Zeleznik R, et al. Deep learning predicts lung cancer treatment response from serial medical imaging. Clin Cancer Res, 2019, 25(11): 3266-3275.
|
17. |
Chen W, Hou X, Hu Y, et al. A deep learning‐and CT image‐based prognostic model for the prediction of survival in non‐small cell lung cancer. Med Phys, 2021, 48(12): 7946-7958.
|
18. |
Cox D R. Regression models and life‐tables. J R Stat Soc: Ser B (Methodol), 1972, 34(2): 187-202.
|
19. |
Baek S, He Y, Allen B G, et al. Deep segmentation networks predict survival of non-small cell lung cancer. Sci Rep, 2019, 9(1): 17286.
|
20. |
Liu K, Li K, Wu T, et al. Improving the accuracy of prognosis for clinical stage I solid lung adenocarcinoma by radiomics models covering tumor per se and peritumoral changes on CT. Eur Radiol, 2022, 32(2): 1065-1077.
|
21. |
Chen S, Ma K, Zheng Y. Med3D: Transfer learning for 3D medical image analysis. arXiv preprint arXiv: 2019: 1904.00625.
|
22. |
Isensee F, Jaeger P F, Kohl S A A, et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods, 2021, 18(2): 203-211.
|
23. |
Ishida H, Shimizu Y, Sakaguchi H, et al. Distinctive clinicopathological features of adenocarcinoma in situ and minimally invasive adenocarcinoma of the lung: a retrospective study. Lung Cancer, 2019, 129: 16-21.
|
24. |
Chen T, Liu S, Chang S, et al. Adversarial robustness: From self-supervised pre-training to fine-tuning// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 699-708.
|
25. |
Zhou Z, Sodha V, Pang J, et al. Models genesis. Med Image Anal, 2021, 67: 101840.
|
26. |
Setio A A A, Traverso A, De Bel T, et al. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge. Med Image Anal, 2017, 42: 1-13.
|
27. |
Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection// Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2980-2988.
|
28. |
Katzman J L, Shaham U, Cloninger A, et al. DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network. BMC Med Res Methodol, 2018, 18(1): 1-12.
|
29. |
Selvaraju R R, Cogswell M, Das A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization// Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 618-626.
|
30. |
Li F, Sone S, Abe H, et al. Malignant versus benign nodules at CT screening for lung cancer: comparison of thin-section CT findings. Radiology, 2004, 233(3): 793-798.
|
31. |
Hattori A, Suzuki K, Matsunaga T, et al. Visceral pleural invasion is not a significant prognostic factor in patients with a part-solid lung cancer. Ann Thorac Surg, 2014, 98(2): 433-438.
|