1. |
Wieland B, Behringer M, Zentgraf K. Motor imagery and the muscle system. International Journal of Psychophysiology, 2022, 174: 57-65.
|
2. |
Fukumoto Y, Todo M, Bunno Y, et al. Differences in motor imagery strategy change behavioral outcome. Scientific Reports, 2022, 12(1): 13868.
|
3. |
Sisti H M, Beebe A, Bishop M, et al. A brief review of motor imagery and bimanual coordination. Frontiers in Human Neuroscience, 2022, 16: 1037410.
|
4. |
Santos L V, Lopes J B P, Duarte N A C, et al. tDCS and motor training in individuals with central nervous system disease: a systematic review. Journal of Bodywork & Movement Therapies, 2020, 24(4): 442-451.
|
5. |
Monai H, Hirase H. Astrocytic calcium activation in a mouse model of tDCS-extended discussion. Neurogenesis(Austin), 2016, 3(1): e1240055.
|
6. |
Guo D, Li J, Zhang Y, et al. Transcranial direct current stimulation reconstructs diminished thalamocortical connectivity during prolonged resting wakefulness: a resting-state fMRI pilot study. Brain Imaging and Behavior, 2020, 14(1): 278-288.
|
7. |
刘蒙蒙, 徐桂芝, 于洪丽, 等. 经颅直流电刺激下脑卒中患者康复期脑功能网络特性研究. 生物医学工程学杂志, 2021, 38(3): 498-506,511.
|
8. |
Wachter D, Wrede A, Schulz-Schaeffer W, et al. Transcranial direct current stimulation induces polarity-specific changes of cortical blood perfusion in the rat. Experimental Neurology, 2011, 227(2): 322-327.
|
9. |
Kober S E, Wood G, Kurzmann J, et al. Near-infrared spectroscopy based neurofeedback training increases specific motor imagery related cortical activation compared to sham feedback. Biological Psychology, 2014, 95: 21-30.
|
10. |
Sawai S, Murata S, Fujikawa S, et al. Effects of neurofeedback training combined with transcranial direct current stimulation on motor imagery: a randomized controlled trial. Frontiers in Neuroscience, 2023, 17: 1148336.
|
11. |
Yang K, Xi X, Wang T, et al. Effects of transcranial direct current stimulation on brain network connectivity and complexity in motor imagery. Neuroscience Letters, 2021, 757: 135968.
|
12. |
Mozafaripour E, Sadati S K, Najafi L, et al. The effect of motor imaginary combined with transcranial direct current stimulation (tDCS) on balance in middle-aged women with high fall risk: a double-blind randomized controlled trial. Neural Plasticity, 2023, 2023: 9680371.
|
13. |
Metais A, Muller C O, Boublay N, et al. Anodal tDCS does not enhance the learning of the sequential finger-tapping task by motor imagery practice in healthy older adults. Frontiers in Aging Neuroscience, 2022, 14: 1060791.
|
14. |
Hu M, Cheng H J, Ji F, et al. Brain functional changes in stroke following rehabilitation using brain-computer interface-assisted motor imagery with and without tDCS: a pilot study. Frontiers in Human Neuroscience, 2021, 15: 692304.
|
15. |
de Brito Guerra TC, Nóbrega T, Morya E, et al. Electroencephalography signal analysis for human activities classification: a solution based on machine learning and motor imagery. Sensors, 2023, 23(9): 4277.
|
16. |
Shibu C J, Sreedharan S, Arun K M, et al. Explainable artificial intelligence model to predict brain states from fNIRS signals. Frontiers in Human Neuroscience, 2023, 16: 1029784.
|
17. |
Wan C S, Hadis D, Helga O, et al. Simultaneous multimodal fNIRS-EEG recordings reveal new insights in neural activity during motor execution, observation, and imagery. Scientific Reports, 2023, 13(1): 5151.
|
18. |
Grami F, de Marco G, Bodranghien F, et al. Cerebellar transcranial direct current stimulation reconfigures brain networks involved in motor execution and mental imagery. Cerebellum, 2022, 21(4): 665-680.
|
19. |
黄福鑫, 孙曜, 李景琦, 等. 经颅直流电刺激时长对脑运动皮层活跃度影响的研究. 中国生物医学工程学报, 2023, 42(4): 411-419.
|
20. |
McFarland D J, Miner L A, Vaughan T M, et al. Mu and beta rhythm topographies during motor imagery and actual movements. Brain Topography, 2000, 12(3): 177-186.
|
21. |
Wang J, Wu D, Cheng Y, et al. Effects of transcranial direct current stimulation on apraxia of speech and cortical activation in patients with stroke: a randomized sham-controlled study. American Journal of Speech-Language Pathology, 2019, 28(4): 1625-1637.
|
22. |
王耀辉, 吕喆, 张重阳, 等. 基于脑电信号样本熵的急性脑梗死患者溶栓效果评价. 中国医学物理学杂志, 2022, 39(1): 81-86.
|
23. |
Pawan, Dhiman R. Motor imagery signal classification using wavelet packet decomposition and modified binary grey wolf optimization. Measurement: Sensors, 2022, 24: 100553.
|
24. |
Luo Z, Lu X, Zhou Y. EEG feature extraction based on brain function network and sample entropy. Journal of Electronics & Information Technology, 2021, 43(2): 412-418.
|
25. |
沈晓燕, 王雪梅, 王燕. 基于样本熵和模式识别的脑电信号识别算法研究. 计算机工程与科学, 2020, 42(8): 1482-1488.
|
26. |
谢平, 陈晓玲, 苏玉萍, 等. 基于EMD-多尺度熵和ELM的运动想象脑电特征提取和模式识别. 中国生物医学工程学报, 2013, 32(6): 641-648.
|
27. |
Hu L, Xie J, Pan C, et al. Multi-feature fusion method based on WOSF and MSE for four-class MI EEG identification. Biomedical Signal Processing and Control, 2021, 69: 102907.
|
28. |
邹晓红, 张轶勃, 孙延贞. 基于局部均值分解和多尺度熵的运动想象脑电信号特征提取方法. 高技术通讯, 2018, 28(1): 22-28.
|
29. |
Wriessnegger S C, Kurzmann J, Neuper C. Spatio-temporal differences in brain oxygenation between movement execution and imagery: a multichannel near-infrared spectroscopy study. International Journal of Psychophysiology, 2008, 67(1): 54-63.
|
30. |
Matsukawa K, Asahara R, Ishii K, et al. Increased prefrontal oxygenation prior to and at the onset of over-ground locomotion in humans. Journal of Applied Physiology, 2020, 129(5): 1161-1172.
|
31. |
Asahara R, Ishii K, Okamoto L, et al. Increased oxygenation in the non-contracting forearm muscle during contralateral skilful hand movement. Experimental Physiology, 2020, 105(6): 950-965.
|
32. |
Martinez J A, Wiffstein M W, Folger S F, et al. Brain activity during unilateral physical and imagined isometric contractions. Frontiers in Human Neuroscience, 2019, 13: 413.
|