1. |
Ju W K, Perkins G A, Kim K Y, et al. Glaucomatous optic neuropathy: mitochondrial dynamics, dysfunction and protection in retinal ganglion cells. Progress in Retinal and Eye Research, 2023, 95: 101136.
|
2. |
顾志恒, 付威威, 姚康, 等. 基于超声成像的眼压非接触测量方法. 医用生物力学, 2023, 38(4): 683-689.
|
3. |
Cheng C Y, Wang N, Wong T Y, et al. Prevalence and causes of vision loss in East Asia in 2015: magnitude, temporal trends and projections. British Journal of Ophthalmology, 2020, 104(5): 616-622.
|
4. |
Weinreb R N, Aung T, Medeiros F A. The pathophysiology and treatment of glaucoma: a review. JAMA, 2014, 311(18): 1901-1911.
|
5. |
Shin J, Kim S, Kim J, et al. Visual field inference from optical coherence tomography using deep learning algorithms: a comparison between devices. Translational Vision Science & Technology, 2021, 10(7): 4.
|
6. |
Saunders L J, Russell R A, Kirwan J F, et al. Examining visual field loss in patients in glaucoma clinics during their predicted remaining lifetime. Investigative Ophthalmology & Visual Science, 2014, 55(1): 102-109.
|
7. |
Gardiner S K, Ren R, Yang H, et al. A method to estimate the amount of neuroretinal rim tissue in glaucoma: comparison with current methods for measuring rim area. American Journal of Ophthalmology, 2014, 157(3): 540-549.
|
8. |
中华医学会眼科学分会青光眼学组, 中国医师协会眼科医师分会青光眼学组. 中国青光眼指南(2020年). 中华眼科杂志, 2020, 56(8): 573-586.
|
9. |
Aref A A, Budenz D L. Detecting visual field progression. Ophthalmology, 2017, 124(12): S51-S56.
|
10. |
Tanna A P, Bandi J R, Budenz D L, et al. Interobserver agreement and intraobserver reproducibility of the subjective determination of glaucomatous visual field progression. Ophthalmology, 2011, 118(1): 60-65.
|
11. |
Shin J W, Sung K R, Lee G C, et al. Ganglion cell–inner plexiform layer change detected by optical coherence tomography indicates progression in advanced glaucoma. Ophthalmology, 2017, 124(10): 1466-1474.
|
12. |
Esfandiari H, Shah P, Torkian P, et al. Five-year clinical outcomes of combined phacoemulsification and trabectome surgery at a single glaucoma center. Graefe's Archive for Clinical and Experimental Ophthalmology, 2019, 257(2): 357-362.
|
13. |
Hu R, Racette L, Chen K S, et al. Functional assessment of glaucoma: uncovering progression. Survey of Ophthalmology, 2020, 65(6): 639-661.
|
14. |
Kummet C M, Zamba K D, Doyle C K, et al. Refinement of pointwise linear regression criteria for determining glaucoma progression. Investigative Ophthalmology & Visual Science, 2013, 54(9): 6234-6241.
|
15. |
Dixit A, Yohannan J, Boland M V. Assessing glaucoma progression using machine learning trained on longitudinal visual field and clinical data. Ophthalmology, 2021, 128(7): 1016-1026.
|
16. |
Vesti E, Johnson C A, Chauhan B C. Comparison of different methods for detecting glaucomatous visual field progression. Investigative Opthalmology & Visual Science, 2003, 44(9): 3873-3879.
|
17. |
Rabiolo A, Morales E, Mohamed L, et al. Comparison of methods to detect and measure glaucomatous visual field progression. Translational Vision Science & Technology, 2019, 8(5): 2.
|
18. |
Saeedi O J, Elze T, D’Acunto L, et al. Agreement and predictors of discordance of 6 visual field progression algorithms. Ophthalmology, 2019, 126(6): 822-828.
|
19. |
Kamalipour A, Moghimi S, Khosravi P, et al. Deep learning estimation of 10-2 visual field map based on circumpapillary retinal nerve fiber layer thickness measurements. American Journal of Ophthalmology, 2023, 246: 163-173.
|
20. |
Taketani Y, Murata H, Fujino Y, et al. How many visual fields are required to precisely predict future test results in glaucoma patients when using different trend analyses. Investigative Ophthalmology & Visual Science, 2015, 56(6): 4076-4082.
|
21. |
Wen J C, Lee C S, Keane P A, et al. Forecasting future Humphrey visual fields using deep learning. PloS one, 2019, 14(4): e0214875.
|
22. |
Park K, Kim J, Lee J. Visual field prediction using recurrent neural network. Scientific Reports, 2019, 9(1): 8385.
|
23. |
Shi Xingjian, Chen Zhourong, Wang Hao, et al. Convolutional LSTM Network: a machine learning approach for precipitation nowcasting// NIPS'15: Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, Canada: MIT Press, 2015, 1: 802-810.
|
24. |
杨鑫, 张建云, 周建中, 等. 基于ConvLSTM网络的多源降雨融合方法. 华中科技大学学报(自然科学版), 2022, 50(8): 33-39.
|
25. |
何毅, 姚圣, 陈毅, 等. ConvLSTM神经网络的时序InSAR地面沉降时空预测. 武汉大学学报(信息科学版), (2023-07-04)[2024-09-19]. DOI: 10.13203/j.whugis20220657.
|
26. |
Moishin M, Deo R C, Prasad R, et al. Designing deep-based learning flood forecast model with ConvLSTM hybrid algorithm. IEEE Access, 2021, 9: 50982-50993.
|
27. |
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997, 9(8): 1735-1780.
|
28. |
王文刀, 王润泽, 魏鑫磊, 等. 基于堆叠式双向LSTM的心电图自动识别算法. 计算机科学, 2020, 47(7): 118-124.
|
29. |
Heijl A, Leske M C, Bengtsson B, et al. Reduction of intraocular pressure and glaucoma progression: results from the early manifest glaucoma trial. Archives of Ophthalmology, 2002, 120(10): 1268-1279.
|
30. |
Montesano G, Chen A, Lu R, et al. UWHVF: a real-world, open source dataset of perimetry tests from the Humphrey field analyzer at the University of Washington. Translational Vision Science & Technology, 2022, 11(1): 2.
|