1. |
Xu H, Xiong A. Advances and disturbances in sEMG-based intentions and movements recognition: a review. IEEE Sensors Journal, 2021, 21(12): 13019-13028.
|
2. |
Staudenmann D, Roeleveld K, Stegeman D F, et al. Methodological aspects of SEMG recordings for force estimation–a tutorial and review. J Electromyogr Kinesiol, 2010, 20(3): 375-387.
|
3. |
Li K, Zhang J, Wang L, et al. A review of the key technologies for sEMG-based human-robot interaction systems. Biomedical Signal Processing and Control, 2020, 62: 102074.
|
4. |
Asif A R, Waris A, Gilani S O, et al. Performance evaluation of convolutional neural network for hand gesture recognition using EMG. Sensors, 2020, 20(6): 1642.
|
5. |
Lee K H, Min J Y, Byun S. Electromyogram-based classification of hand and finger gestures using artificial neural networks. Sensors, 2021, 22(1): 225.
|
6. |
Wu J, Li X, Liu W, et al. sEMG signal processing methods: a review. Journal of Physics: Conference Series, 2019, 1237(3): 032008.
|
7. |
Yu M, Li G, Jiang D, et al. Application of PSO-RBF neural network in gesture recognition of continuous surface EMG signals. Journal of Intelligent & Fuzzy Systems, 2020, 38(3): 2469-2480.
|
8. |
Too J, Abdullah A R, Mohd Saad N. Hybrid binary particle swarm optimization differential evolution-based feature selection for EMG signals classification. Axioms, 2019, 8(3): 79.
|
9. |
Zanghieri M, Benatti S, Burrello A, et al. Robust real-time embedded EMG recognition framework using temporal convolutional networks on a multicore IoT processor. IEEE Transactions on Biomedical Circuits and Systems, 2020, 14(2): 244-256.
|
10. |
Zanghieri M, Benatti S, Burrello A, et al. sEMG-based regression of hand kinematics with temporal convolutional networks on a low-power edge microcontroller//2021 IEEE International Conference on Omni-Layer Intelligent Systems (COINS). IEEE, 2021: 1-6.
|
11. |
Bhushan S, Alshehri M, Keshta I, et al. An experimental analysis of various machine learning algorithms for hand gesture recognition. Electronics, 2022, 11(6): 968.
|
12. |
Sundberg C W, Fitts R H. Bioenergetic basis of skeletal muscle fatigue. Current Opinion in Physiology, 2019, 10: 118-127.
|
13. |
徐瑞, 李志才, 王雯婕, 等. 基于肌电的人机交互控制策略及其应用与挑战. 电子测量与仪器学报, 2020, 34(2): 1-11.
|
14. |
Al-Mulla M R, Sepulveda F, Colley M. A review of non-invasive techniques to detect and predict localised muscle fatigue. Sensors, 2011, 11(4): 3545-3594.
|
15. |
Yousif H A, Zakaria A, Rahim N A, et al. Assessment of muscles fatigue based on surface EMG signals using machine learning and statistical approaches: a review//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2019, 705(1): 012010.
|
16. |
Ebied A, Awadallah A M, Abbass M A, et al. Upper limb muscle fatigue analysis using multi-channel surface EMG//2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES). IEEE, 2020: 423-427.
|
17. |
Rampichini S, Vieira T M, Castiglioni P, et al. Complexity analysis of surface electromyography for assessing the myoelectric manifestation of muscle fatigue: A review. Entropy, 2020, 22(5): 529.
|
18. |
Su Y, Sun S, Ozturk Y, et al. Measurement of upper limb muscle fatigue using deep belief networks. Journal of Mechanics in Medicine and Biology, 2016, 16(8): 1640032.
|
19. |
Moniri A, Terracina D, Rodriguez-Manzano J, et al. Real-time forecasting of sEMG features for trunk muscle fatigue using machine learning. IEEE Transactions on Biomedical Engineering, 2021, 68(2): 718-727.
|
20. |
Xiong D, Zhang D, Zhao X, et al. Deep learning for EMG-based human-machine interaction: A review. IEEE/CAA Journal of Automatica Sinica, 2021, 8(3): 512-533.
|
21. |
González-Izal M, Malanda A, Gorostiaga E, et al. Electromyographic models to assess muscle fatigue. Journal of Electromyography and Kinesiology, 2012, 22(4): 501-512.
|
22. |
Pizzolato S, Tagliapietra L, Cognolato M, et al. Comparison of six electromyography acquisition setups on hand movement classification tasks. PloS one, 2017, 12(10): e0186132.
|
23. |
Krasoulis A, Kyranou I, Erden M S, et al. Improved prosthetic hand control with concurrent use of myoelectric and inertial measurements. Journal of Neuroengineering and Rehabilitation, 2017, 14(1): 71.
|
24. |
Du Y, Jin W, Wei W, et al. Surface EMG-based inter-session gesture recognition enhanced by deep domain adaptation. Sensors, 2017, 17(3): 458.
|
25. |
Amma C, Krings T, Böer J, et al. Advancing muscle-computer interfaces with high-density electromyography//Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. 2015: 929-938.
|
26. |
Jaramillo-Yánez A, Benalcázar M E, Mena-Maldonado E. Real-time hand gesture recognition using surface electromyography and machine learning: A systematic literature review. Sensors, 2020, 20(9): 2467.
|
27. |
Zhu B, Zhang D, Chu Y, et al. SeNic: An open source dataset for sEMG-based gesture recognition in non-ideal conditions. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30: 1252-1260.
|
28. |
Wang J, Pang M, Yu P, et al. Effect of muscle fatigue on surface electromyography-based hand grasp force estimation. Applied Bionics and Biomechanics, 2021, 2021: 8817480.
|
29. |
Li W, Shi P, Yu H. Gesture recognition using surface electromyography and deep learning for prostheses hand: state-of-the-art, challenges, and future. Frontiers in Neuroscience, 2021, 15: 621885.
|
30. |
Yang J, Pan J, Li J. sEMG-based continuous hand gesture recognition using GMM-HMM and threshold model//2017 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2017: 1509-1514.
|