1. |
Soffer R L. Post-translational modification of proteins catalyzed by aminoacyl-tRNA-protein transferases. Mol Cell Biochem, 1973, 2(1): 3-14.
|
2. |
Wold F. In vivo chemical modification of proteins (post-translational modification). Annu Rev Biochem, 1981, 50(1): 783-814.
|
3. |
Fu J, Wu M, Liu X. Proteomic approaches beyond expression profiling and PTM analysis. Anal Bioanal Chem, 2018, 410(17): 4051-4060.
|
4. |
Huang H, Sabari B R, Garcia B A, et al. SnapShot: histone modifications. Cell, 2014, 159(2): 458-458.e1.
|
5. |
Wang Y, Jin J, Chung M W H, et al. Identification of the YEATS domain of GAS41 as a pH-dependent reader of histone succinylation. P Natl Acad Sci USA, 2018, 115(10): 2365-2370.
|
6. |
Luo F, Wang M, Liu Y, et al. DeepPhos: prediction of protein phosphorylation sites with deep learning. Bioinformatics, 2019, 35(16): 2766-2773.
|
7. |
陈焕超, 魏志森, 於东军, 等. 基于LightGBM的蛋白质类泛素化修饰位点预测. 南京理工大学学报, 2022, 46(2): 156-163.
|
8. |
Tan M, Luo H, Lee S, et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell, 2011, 146(6): 1016-1028.
|
9. |
颜志良, 丰智鹏, 刘丹, 等. 一种混合深度神经网络的赖氨酸乙酰化位点预测方法. 南京大学学报(自然科学版), 57(4): 627-640.
|
10. |
Huang H, Zhang D, Wang Y, et al. Lysine benzoylation is a histone mark regulated by SIRT2. Nat Commu, 2018, 9(1): 3374.
|
11. |
Ramazi S, Allahverdi A, Zahiri J. Evaluation of post-translational modifications in histone proteins: a review on histone modification defects in developmental and neurological disorders. J Biosciences, 2020, 45(1): 135.
|
12. |
Carubbi F, Alunno A, Gerli R, et al. Post-translational modifications of proteins: novel insights in the autoimmune response in rheumatoid arthritis. Cells, 2019, 8(7): 657.
|
13. |
Lee T Y, Huang H D, Hung J H, et al. dbPTM: an information repository of protein post-translational modification. Nucleic Acids Res, 2006, 34(Database issue): D622-627.
|
14. |
Zhang D, Tang Z, Huang H, et al. Metabolic regulation of gene expression by histone lactylation. Nature, 2019, 574(7779): 575-580.
|
15. |
Koronowski K B, Greco C M, Huang H, et al. Ketogenesis impact on liver metabolism revealed by proteomics of lysine β-hydroxybutyrylation. Cell Rep, 2021, 36(5): 109487.
|
16. |
Luo W, He M, Luo Q, et al. Proteome-wide analysis of lysine β-hydroxybutyrylation in the myocardium of diabetic rat model with cardiomyopathy. Front Cardiovasc Med, 2022, 9: 1066822.
|
17. |
范成斌. 蛋白质三羟基丁酰化位点预测的分类模型研究. 漳州: 闽南师范大学, 2023.
|
18. |
Zhao S, Zhang X, Li H. Beyond histone acetylation—writing and erasing histone acylations. Curr Opin Struc Biol, 2018, 53: 169-177.
|
19. |
Qiu W R, Sun B Q, Tang H, et al. Identify and analysis crotonylation sites in histone by using support vector machines. Artif Intell Med, 2017, 83: 75-81.
|
20. |
Ju Z, He J J. Prediction of lysine crotonylation sites by incorporating the composition of k-spaced amino acid pairs into Chou’s general PseAAC. J Mol Graph Model, 2017, 77: 200-204.
|
21. |
Qiu W R, Sun B Q, Xiao X, et al. iKcr-PseEns: Identify lysine crotonylation sites in histone proteins with pseudo components and ensemble classifier. Genomics, 2018, 110(5): 239-246.
|
22. |
Malebary S J, Rehman M S ur, Khan Y D. iCrotoK-PseAAC: identify lysine crotonylation sites by blending position relative statistical features according to the Chou’s 5-step rule. Plos One, 2019, 14(11): e0223993.
|
23. |
Liu Y, Yu Z, Chen C, et al. Prediction of protein crotonylation sites through LightGBM classifier based on SMOTE and elastic net. Anal Biochem, 2020, 609: 113903.
|
24. |
Lv H, Dao F Y, Guan Z X, et al. Deep-Kcr: accurate detection of lysine crotonylation sites using deep learning method. Brief Bioinform, 2021, 22(4): bbaa255.
|
25. |
Tng S S, Le N Q K, Yeh H Y, et al. Improved prediction model of protein lysine crotonylation sites using bidirectional recurrent neural networks. J Proteome Res, 2022, 21(1): 265-273.
|
26. |
Shen L C, Liu Y, Song J, et al. SAResNet: self-attention residual network for predicting DNA-protein binding. Brief Bioinform, 2021, 22(5): bbab101.
|
27. |
Zhang Y, Liu Y, Xu J, et al. Leveraging the attention mechanism to improve the identification of DNA N6-methyladenine sites. Brief Bioinform, 2021, 22(6): bbab351.
|
28. |
Han K, Shen L C, Zhu Y H, et al. MAResNet: predicting transcription factor binding sites by combining multi-scale bottom-up and top-down attention and residual network. Brief Bioinform, 2022, 23(1): bbab445.
|
29. |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010.
|
30. |
Greff K, Srivastava R K, Koutnik J, et al. LSTM: a search space odyssey. IEEE T Neur Net Lear, 2017, 28(10): 2222-2232.
|
31. |
Berman H M, Burley S K. Protein Data Bank (PDB): Fifty-three years young and having a transformative impact on science and society. Q Rev Biophys, 2025, 58: e9.
|
32. |
Chen Z, Zhao P, Li F, et al. iFeature: a Python package and web server for features extraction and selection from protein and peptide sequences. Bioinformatics, 2018, 34(14): 2499-2502.
|