1. |
韦天军, 胡国兵, 朱向明, 等. 彩色多普勒超声诊断小儿急性肠套叠的应用价值. 皖南医学院学报, 2016, 35(3): 267-268.
|
2. |
Li X Z, Wang H, Song J, et al. Ultrasonographic diagnosis of intussusception in children: a systematic review and meta‐analysis. J Ultras Med, 2021, 40(6): 1077-1084.
|
3. |
Tsou P Y, Wang Y H, Ma Y K, et al. Accuracy of point-of-care ultrasound and radiology-performed ultrasound for intussusception: a systematic review and meta-analysis. Am J Emerg Med, 2019, 37(9): 1760-1769.
|
4. |
Edwards E A, Pigg N, Courtier J, et al. Intussusception: past, present and future. Pediatr Radiol, 2017, 47(9): 1101-1108.
|
5. |
Hryhorczuk A L, Strouse P J. Validation of US as a first-line diagnostic test for assessment of pediatric ileocolic intussusception. Pediatr Radiol, 2009, 39(10): 1075-1079.
|
6. |
Henrikson S, Blane C E, Koujok K, et al. The effect of screening sonography on the positive rate of enemas for intussusception. Pediatr Radiol, 2003, 33(3): 190-193.
|
7. |
宫进昌, 赵尚义, 王远军. 基于深度学习的医学图像分割研究进展. 中国医学物理学杂志, 2019, 36(4): 420-424.
|
8. |
尹宏鹏, 陈波, 柴毅, 等. 基于视觉的目标检测与跟踪综述. 自动化学报, 2016, 42(10): 1466-1489.
|
9. |
He K, Gkioxari G, Dollár P, et al. Mask R-CNN// Proceedings of the IEEE International Conference on Computer Vision (ICCV). Venice: IEEE, 2017: 2961-2969.
|
10. |
Girshick R. Fast R-CNN/ /Proceedings of the IEEE International Conference on Computer Vision (ICCV). Santiago: IEEE, 2015: 1440-1448.
|
11. |
Jiang P, Ergu D, Liu F, et al. A review of YOLO algorithm developments. Procedia Comput, 2022, 199: 1066-1073.
|
12. |
Liu W, Anguelov D, Erhan D, et al. SSD: single shot multibox detector// Bastian L, Jiri M, Nicu S, et al. Computer Vision–ECCV 2016: 14th European Conference, Proceedings. Amsterdam: Springer International Publishing, 2016: 21-37.
|
13. |
Kim S, Yoon H, Lee M J, et al. Performance of deep learning-based algorithm for detection of ileocolic intussusception on abdominal radiographs of young children. Sci Rep, 2019, 9(1): 19420.
|
14. |
Kwon G, Ryu J, Oh J, et al. Deep learning algorithms for detecting and visualising intussusception on plain abdominal radiography in children: a retrospective multicenter study. Sci Rep, 2020, 10(1): 17582.
|
15. |
Li Z, Song C, Huang J, et al. Performance of deep learning-based algorithm for detection of pediatric intussusception on abdominal ultrasound images. Gastroent Res Pract, 2022, 2022(1): 9285238.
|
16. |
Kim S W, Cheon J E, Choi Y H, et al. Feasibility of a deep learning artificial intelligence model for the diagnosis of pediatric ileocolic intussusception with grayscale ultrasonography. Ultrasonography, 2024, 43(1): 57.
|
17. |
Ju R Y, Cai W. Fracture detection in pediatric wrist trauma X-ray images using YOLOv8 algorithm. Sci Rep, 2023, 13(1): 20077.
|
18. |
Liu X, Peng H, Zheng N, et al. EfficientViT: memory efficient vision transformer with cascaded group attention// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver: IEEE/CVF, 2023: 14420-14430.
|
19. |
Mahasin M, Dewi I A. Comparison of CSPDarkNet53, CSPResNeXt-50, and EfficientNet-B0 backbones on YOLOv4 as object detector. IJEST, 2022, 2(3): 64-72.
|
20. |
Wang C Y, Bochkovskiy A, Liao H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver: IEEE/CVF, 2023: 7464-7475.
|
21. |
Hou Q, Zhou D, Feng J. Coordinate attention for efficient mobile network design// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville: IEEE/CVF, 2021: 13708-13717.
|
22. |
Xie E, Wang W, Yu Z, et al. SegFormer: simple and efficient design for semantic segmentation with transformers. NIPS, 2021, 34: 12077-12090.
|
23. |
Tan M, Le Q. EfficientNet: rethinking model scaling for convolutional neural networks// International Conference on Machine Learning (ICML). Long Beach: PMLR, 2019: 6105-6114.
|