1. |
Moghaddam F D, Zare E N, Hassanpour M, et al. Chitosan-based nanosystems for cancer diagnosis and therapy: stimuli-responsive, immune response, and clinical studies. Carbohyd Polym, 2024, 330: 121839.
|
2. |
徐睿锋, 孙鑫, 田雨, 等. 《2016年中国癌症发病死亡数据》要点解读. 中国胸心血管外科临床杂志, 2024, 31(3): 343-356.
|
3. |
Skripka A, Mendez-Gonzalez D, Marin R, et al. Near infrared bioimaging and biosensing with semiconductor and rare-earth nanoparticles: recent developments in multifunctional nanomaterials. Nanoscale Adv, 2021, 3(22): 6310-6329.
|
4. |
Yang H, Li R, Zhang Y, et al. Colloidal alloyed quantum dots with enhanced photoluminescence quantum yield in the NIR-Ⅱ window. J Am Chem Soc, 2021, 143(6): 2601-2607.
|
5. |
林倩黎, 叶远馨, 李美, 等. 量子点在检验医学领域中的研究进展. 华西医学, 2021, 36(8): 1001-1006.
|
6. |
Jung B K, Yoo H, Seo B, et al. High-affinity ligand-enhanced passivation of group Ⅲ-V colloidal quantum dots for sensitive near-infrared photodetection. ACS Energy Lett, 2024, 9(2): 504-512.
|
7. |
Jiang Y, Zhao T, Xu W, et al. Red/NIR C-dots: a perspective from carbon precursors, photoluminescence tuning and bioapplications. Carbon, 2024, 219: 118838.
|
8. |
Lim L J, Zhao X, Tan Z. Non-toxic CuInS2/ZnS colloidal quantum dots for near-infrared light-emitting diodes. Adv Mater, 2023, 35(28): e2301887.
|
9. |
Li S, Jung S, Chung W, et al. Defect engineering of ternary Cu-In-Se quantum dots for boosting photoelectrochemical hydrogen generation. Carbon Energy, 2023, 5(12): e384.
|
10. |
Hasanirokh K, Asgari A, Mohammadi S. Fabrication of a light-emitting device based on the CdS/ZnS spherical quantum dots. J Eur Opt Soc-Rapid, 2021, 17(1): 26.
|
11. |
孙静文, 魏国光, 钱余义, 等. 硫化铅量子点的结肠癌近红外IIb区荧光成像研究. 药学学报, 2020, 55(7): 1699-1706.
|
12. |
房诗玉, 刘振宇, 金佳杰, 等. 碲镉汞量子点的离子交换能带调控及其近红外自吸收性质. 红外与毫米波学报, 2022, 41(2): 377-383.
|
13. |
Li Y, Zhang P, Tang W, et al. Bright, magnetic NIR-Ⅱ quantum dot probe for sensitive dual-modality imaging and intensive combination therapy of cancer. ACS Nano, 2022, 16(5): 8076-8094.
|
14. |
Liu H, Cai P, McHugh K J, et al. Aqueous synthesis of bright near-infrared-emitting Zn-Cu-In-Se quantum dots for multiplexed detection of tumor markers. Nano Res, 2022, 15(9): 8351-8359.
|
15. |
Yang L, Zhang S, Xu B, et al. I-Ⅲ-Ⅵ quantum dots and derivatives: design, synthesis, and properties for light-emitting diodes. Nano Lett, 2023, 23(7): 2443-2453.
|
16. |
Lu H, Hu Z, Zhou W, et al. Synthesis and structure design of I-Ⅲ-Ⅵ quantum dots for white light-emitting diodes. Mater Chem Front, 2022, 6(4): 418-429.
|
17. |
Zhang X, Wang T, Lin Q, et al. Highly efficient near-infrared light-emitting diodes based on Zn: CuInSe2/ZnS//ZnS quantum dots with double shell engineering. Opt Express, 2022, 30(16): 29449-29460.
|
18. |
McHugh K J, Jing L, Severt S Y, et al. Biocompatible near-infrared quantum dots delivered to the skin by microneedle patches record vaccination. Sci Transl Med, 2019, 11(523): eaay7162.
|
19. |
Langevin M A, Ritcey A M, Allen C N. Air-stable near-infrared AgInSe2 nanocrystals. ACS Nano, 2014, 8(4): 3476-3482.
|
20. |
Ning J, Xiong Y, Huang F, et al. Growth of multinary copper-based sulfide shells on CuInSe2 nanocrystals for significant improvement of their near-infrared emission. Chem Mater, 2020, 32(18): 7842-7849.
|
21. |
廉纬, 方泽铠, 涂大涛, 等. 模板法控制合成AgInSe2: Zn2+近红外荧光量子点及其生物标记应用. 化学学报, 2022, 80(5): 625-632.
|
22. |
Qu S, Yuan X, Li Y, et al. Aqueous synthesis of composition-tuned defects in CuInSe2 nanocrystals for enhanced visible-light photocatalytic H2 evolution. Nanoscale Adv, 2021, 3(8): 2334-2342.
|
23. |
Yang X, Li Y, Zhang P, et al. Building in biologically appropriate multifunctionality in aqueous copper indium selenide-based quantum dots. Nanoscale, 2023, 15(33): 13603-13616.
|
24. |
Jiao M, Portniagin A S, Luo X, et al. Semiconductor nanocrystals emitting in the second near-infrared window: optical properties and application in biomedical imaging. Adv Opt Mater, 2022, 10(14): 2200226.
|
25. |
Yang G, Xia J, Dai X, et al. A targeted multi-crystalline manganese oxide as a tumor-selective nano-sized MRI contrast agent for early and accurate diagnosis of tumors. Int J Nanomed, 2024, 19: 527-540.
|
26. |
Li W, Liu J B, Hou L K, et al. Liquid biopsy in lung cancer: significance in diagnostics, prediction, and treatment monitoring. Mol Cancer, 2022, 21(1): 25.
|
27. |
de Souza N, Zhao S, Bodenmiller B. Multiplex protein imaging in tumour biology. Nat Rev Cancer, 2024, 24(13): 171-191.
|
28. |
Lian W, Tu D, Hu P, et al. Broadband excitable NIR-II luminescent nano-bioprobes based on CuInSe2 quantum dots for the detection of circulating tumor cells. Nano Today, 2020, 35: 100943.
|
29. |
Lee J Y, Heon Nam D, Oh M H, et al. Serum-stable quantum dot--protein hybrid nanocapsules for optical bio-imaging. Nanotechnology, 2014, 25(17): 175702.
|
30. |
Miao D, Shi J, Lv Q, et al. NAT10-mediated ac4C-modified ANKZF1 promotes tumor progression and lymphangiogenesis in clear-cell renal cell carcinoma by attenuating YWHAE-driven cytoplasmic retention of YAP1. Cancer Commun, 2024, 44(3): 361-383.
|
31. |
Zhou X, Fan Y, Li S, et al. Molecular engineering of bright NIR-I/NIR-II nanofluorophores for high-resolution bioimaging and tumor detection in vivo. Nano Lett, 2024, 24(5): 1792-1800.
|
32. |
Meng X, Li H, Chen Y, et al. In vivo precision evaluation of lymphatic function by SWIR luminescence imaging with PbS quantum dots. Adv Sci, 2023, 10(7): e2206579.
|
33. |
Pons T, Pic E, Lequeux N, et al. Cadmium-free CuInS2/ZnS quantum dots for sentinel lymph node imaging with reduced toxicity. ACS Nano, 2010, 4(5): 2531-2538.
|
34. |
Sun X, Shi M, Zhang C, et al. Fluorescent Ag-In-S/ZnS quantum dots for tumor drainage lymph node imaging in vivo. ACS Appl Nano Mater, 2021, 4(2): 1029-1037.
|
35. |
Boas D, van Teijlingen A, Shpilt Z, et al. A multifunctional drug delivery system based on switchable peptide-stabilized emulsions. Chem, 2024. DOI: 10.1016/j.chempr.2024.02.003.
|
36. |
Wu J, Ma T, Zhu M, et al. A pluripotential neutrophil-mimic nanovehicle modulates immune microenvironment with targeted drug delivery for augmented antitumor chemotherapy. ACS Nano, 2024, 18(7): 5864-5877.
|
37. |
Yan J, Yu H, Liu C, et al. Low-temperature photothermal-chemotherapy enhancing tumor immunotherapy by tetrahedral framework nucleic acids nanogels based drug delivery system. Chem Eng J, 2024, 481: 148616.
|
38. |
Li Z, Xu K, Qin L, et al. Hollow nanomaterials in advanced drug delivery systems: from single-to multiple shells. Adv Mater, 2023, 35(12): e2203890.
|
39. |
Wu P, Ou K, Chen J, et al. Methotrexate-conjugated AgInS2/ZnS quantum dots for optical imaging and drug delivery. Mater Lett, 2014, 128: 412-416.
|
40. |
Akbarzadeh M, Babaei M, Abnous K, et al. Hybrid silica-coated Gd-Zn-Cu-In-S/ZnS bimodal quantum dots as an epithelial cell adhesion molecule targeted drug delivery and imaging system. Int J Pharm, 2019, 570: 118645.
|
41. |
Tang Y, Bisoyi H K, Chen X M, et al. Pyroptosis-mediated synergistic photodynamic and photothermal immunotherapy enabled by a tumor-membrane-targeted photosensitive dimer. Adv Mater, 2023, 35(25): e2300232.
|
42. |
Li S, Xu B, Lu M, et al. Tensile-strained palladium nanosheets for synthetic catalytic therapy and phototherapy. Adv Mater, 2022, 34(32): e2202609.
|
43. |
Zhang Z, Kang M, Tan H, et al. The fast-growing field of photo-driven theranostics based on aggregation-induced emission. Chem Soc Rev, 2022, 51(6): 1983-2030.
|
44. |
Mayerhoefer M E, Raderer M, Lamm W, et al. CXCR4 PET/MRI for follow-up of gastric mucosa-associated lymphoid tissue lymphoma after first-line helicobacter pylori eradication. Blood, 2022, 139(2): 240-244.
|
45. |
Lv G, Guo W, Zhang W, et al. Near-infrared emission CuInS/ZnS quantum dots: all-in-one theranostic nanomedicines with intrinsic fluorescence/photoacoustic imaging for tumor phototherapy. ACS Nano, 2016, 10(10): 9637-9645.
|