1. |
Xie N, Shen G, Gao W, et al. Neoantigens: promising targets for cancer therapy. Signal Transduct Target Ther, 2023, 8(1): 9.
|
2. |
Joglekar A V, Li G. T cell antigen discovery. Nat Methods, 2021, 18(8): 873-880.
|
3. |
Chen J, Zhao B, Lin S, et al. TEPCAM: Prediction of T-cell receptor-epitope binding specificity via interpretable deep learning. Protein Sci, 2024, 33(1): e4841.
|
4. |
Gielis S, Moris P, Bittremieux W, et al. Detection of enriched T cell epitope specificity in full T cell receptor sequence repertoires. Front Immunol, 2019, 10: 2820.
|
5. |
De Neuter N, Bittremieux W, Beirnaert C, et al. On the feasibility of mining CD8+ T cell receptor patterns underlying immunogenic peptide recognition. Immunogenetics, 2018, 70(3): 159-168.
|
6. |
Montemurro A, Schuster V, Povlsen H R, et al. NetTCR-2. 0 enables accurate prediction of TCR-peptide binding by using paired TCRα and β sequence data. Commun Biol, 2021, 4(1): 1060.
|
7. |
Springer I, Besser H, Tickotsky-Moskovitz N, et al. Prediction of specific TCR-peptide binding from large dictionaries of TCR-peptide pairs. Front Immunol, 2020, 11: 1803.
|
8. |
Zhang Y, Jian X, Xu L, et al. iTCep: a deep learning framework for identification of T cell epitopes by harnessing fusion features. Front Genet, 2023, 14: 1141535.
|
9. |
Shugay M, Bagaev D V, Zvyagin I V, et al. VDJdb: a curated database of T-cell receptor sequences with known antigen specificity. Nucleic Acids Res, 2018, 46(D1): D419-D427.
|
10. |
Tickotsky N, Sagiv T, Prilusky J, et al. McPAS-TCR: a manually curated catalogue of pathology-associated T cell receptor sequences. Bioinformatics, 2017, 33(18): 2924-2929.
|
11. |
Chen S Y, Yue T, Lei Q, et al. TCRdb: a comprehensive database for T-cell receptor sequences with powerful search function. Nucleic Acids Res, 2021, 49(D1): D468-D474.
|
12. |
Elnaggar A, Heinzinger M, Dallago C, et al. ProtTrans: Toward understanding the language of life through self-supervised learning. IEEE Trans Pattern Anal Mach Intell, 2022, 44(10): 7112-7127.
|
13. |
刘桂霞, 裴志尧, 宋佳智. 基于深度学习的蛋白质-ATP结合位点预测. 吉林大学学报(工学版), 2022, 52(01): 187-194.
|
14. |
Kidera A, Konishi Y, Oka M, et al. Statistical analysis of the physical properties of the 20 naturally occurring amino acids. J Protein Chem, 1985, 4(1): 23-55.
|
15. |
Bi J, Zheng Y, Yan F, et al. Prediction of epitope-associated TCR by using network topological similarity based on deepwalk. IEEE Access, 2019, 7: 151273-151281.
|
16. |
Xu Y, Qian X, Tong Y, et al. AttnTAP: A dual-input framework incorporating the attention mechanism for accurately predicting TCR-peptide binding. Front Genet, 2022, 13: 942491.
|
17. |
Cai M, Bang S-J, Zhang P, et al. ATM-TCR: TCR-epitope binding affinity prediction using a multi-head self-attention model. Front Immun, 2022, 13.
|
18. |
Alspach E, Lussier D M, Miceli A P, et al. MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nature, 2019, 574(7780): 696-701.
|
19. |
Marty Pyke R, Thompson W K, Salem R M, et al. Evolutionary pressure against MHC class II binding cancer mutations. Cell, 2018, 175(2): 416-428. e13.
|
20. |
王广志, 李雨雨, 谢鹭. 个性化肿瘤新抗原疫苗中抗原肽预测研究进展. 生物化学与生物物理进展, 2019(5): 8.
|
21. |
Lu M, Xu L, Jian X, et al. dbPepNeo2. 0: A database for human tumor neoantigen peptides from mass spectrometry and TCR recognition. Front Immunol, 2022, 13: 855976.
|
22. |
赵静静, 简星星, 王广志, 等. TCR组库及其在肿瘤免疫中的应用前景与挑战. 生命科学, 2021, 33(4): 6.
|