1. |
中国互联网络信息中心. 第52次《中国互联网络发展状况统计报告》. (2023-08-28) [2024-07-30]. https://cnnic.cn/n4/2023/0828/c199-10830.html.
|
2. |
黄涌, 葸娟霞, 关成斌. 基于BERT-BiGRU模型的智慧医疗问答系统. 软件工程, 2024, 27(3): 11-14,25.
|
3. |
Cilar L B, Lucija G, Gregor S. Review of artificial intelligence-based question-answering systems in healthcare. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2023, 13(2): e1487.
|
4. |
Hu Y, Han G, Liu X, et al. Design and implementation of a medical question and answer system based on deep learning. Mathematical Problems in Engineering, 2022, 2022(1): 4600404.
|
5. |
郑承宇, 王新, 王婷, 等. 基于ALBERT-TextCNN模型的多标签医疗文本分类方法. 山东大学学报(理学版), 2022, 57(4): 21-29.
|
6. |
Yao L, Mao C, Luo Y. Clinical text classification with rule-based features and knowledge-guided convolutional neural networks. BMC Medical Informatics and Decision Making, 2019, 19(S3): 71.
|
7. |
Patrick J, Li M. An ontology for clinical questions about the contents of patient notes. Journal of Biomedical Informatics, 2012, 45(2): 292-306.
|
8. |
Roberts K, Rodriguez L, Shooshan S E, et al. Resource classification for medical questions. AMIA Annual Symposium Proceedings. 2017, 2016: 1040-1049.
|
9. |
Ibrahim M A, Ghani Khan M U, Mehmood F, et al. GHS-NET a generic hybridized shallow neural network for multi-label biomedical text classification. Journal of Biomedical Informatics, 2021, 116: 103699.
|
10. |
杜永兴, 孙彤彤, 周李涌, 等. 基于Vocab-GCN的中文医疗文本分类方法. 传感器与微系统, 2023, 42(8): 152-156.
|
11. |
Lu H, Ehwerhemuepha L, Rakovski C. A comparative study on deep learning models for text classification of unstructured medical notes with various levels of class imbalance. BMC Medical Research Methodology, 2022, 22(1): 181.
|
12. |
许浪, 李代伟, 张海清, 等. 基于神经网络的医疗文本分类研究. 计算机工程与科学, 2023, 45(6): 1116-1122.
|
13. |
Bagui S, Nandi D, Bagui S, et al. Machine learning and deep learning for phishing email classification using one-hot encoding. Journal of Computer Science, 2021, 17: 610-623.
|
14. |
HaCohen-Kerner Y, Miller D, Yigal Y. The influence of preprocessing on text classification using a bag-of-words representation. PloS One, 2020, 15(5): e0232525.
|
15. |
Chen K, Zhang Z, Long J, et al. Turning from TF-IDF to TF-IGM for term weighting in text classification. Expert Systems with Applications, 2016, 66: 245-260.
|
16. |
Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their compositionality. Advances in Neural Information Processing Systems, 2013, 26: 3111-3119.
|
17. |
Pennington J, Socher R, Manning C D. Glove: global vectors for word representation// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg: Association for Computational Linguistics, 2014: 1532-1543.
|
18. |
Joulin A, Grave E, Bojanowski P, et al. Bag of tricks for efficient text classification. arXiv preprint, 2016, arXiv: 1607.01759.
|
19. |
Devlin J, Chang M W, Lee K, et al. Bert: pre-training of deep bidirectional transformers for language understanding// Proceedings of NAACL-HLT 2019. Minneapolis: Association for Computational Linguistics, 2019: 4171-4186.
|
20. |
Liu Y, Ott M, Goyal N, et al. Roberta: A robustly optimized bert pretraining approach. arXiv preprint, 2019, arXiv: 1907.11692.
|
21. |
Lan Z, Chen M, Goodman S, et al. Albert: A lite bert for self-supervised learning of language representations. arXiv preprint, 2019, arXiv: 1909.11942.
|
22. |
Yang Z, Dai Z, Yang Y, et al. Xlnet: generalized autoregressive pretraining for language understanding. Advances in Neural Information Processing Systems, 2019, 32.
|
23. |
郑承宇, 王新, 王婷, 等. 基于迁移学习和集成学习的医疗文本分类. 计算机技术与发展, 2022, 32(4): 28-33.
|
24. |
李博涵, 向宇轩, 封顶, 等. 融合知识感知与双重注意力的短文本分类模型. 软件学报, 2022, 33(10): 3565-3581.
|
25. |
王宇亮, 杨观赐, 罗可欣. 基于意图—槽位注意机制的医疗咨询意图理解与实体抽取算法. 计算机应用研究, 2023, 40(5): 1402-1409.
|
26. |
魏鹏飞, 曾碧, 汪明慧, 等. 基于深度学习的口语理解联合建模算法综述. 软件学报, 2022, 33(11): 4192-4216.
|
27. |
王鲁, 刘瑞麟, 黄敬中, 等. 基于CNN-Transformer的农作物病虫害知识问答意图识别与槽位填充联合模型. 农业工程学报, 2024, 40(13): 156-162.
|
28. |
Zhangn N, Che M, Bi Z, et al. Cblue: A chinese biomedical language understanding evaluation benchmark// Annual Meeting of the Association for Computational Linguistics 2022 (ACL2022). Dublin: Association for Computational Linguistics, 2022: 7888-7915.
|
29. |
尹宝生, 周澎. 融合标签知识的中文医学命名实体识别. 计算机科学, 2024, 51(S1): 140-146.
|
30. |
韩世依, 张钰晖, 马云山, 等. 清华大学自然语言处理与社会人文计算实验室. THUOCL: 清华大学开放中文词. (2017-01-20) [2024-12-02]. https://github.com/thunlp/THUOCL.
|
31. |
Lai S, Xu L, Liu K, et al. Recurrent convolutional neural networks for text classification// Proceedings of the AAAI conference on artificial intelligence 2015 (AAAI2015). Austin: Association for the Advancement of Artificial Intelligence, 2015, 29(1): 2267-2273.
|
32. |
第四届神经计算在先进应用中的国际会议. 中文糖尿病数据集. (2023-04-04) [2024-12-02]. https://github.com/yuni-bobo/Chinese-DQC.
|
33. |
尹康平, 阿里夸克. 医疗搜索检索词意图分类数据集. (2021-03-22) [2024-12-02]. https://tianchi.aliyun.com/dataset/95414.
|
34. |
苏向东机器学习小组, 内蒙古大学. 中文医学意图数据集. (2021-02-26) [2024-12-02]. https://tianchi.aliyun.com/dataset/92109.
|
35. |
王乾, 曾诚, 何鹏, 等. 基于RoBERTa-RCNN和注意力池化的新闻主题文本分类. 郑州大学学报(理学版), 2024, 56(2): 43-50.
|
36. |
Xiong J Z, Feng M Y, Wang X S, et al. Decoding sentiments: Enhancing covid-19 tweet analysis through bert-rcnn fusion. Journal of Theory and Practice of Engineering Science, 2024, 4(1): 86-93.
|