1. |
Avci M, Heck M, O’Rear E A, et al. Hemolysis estimation in turbulent flow for the FDA critical path initiative centrifugal blood pump. Biomechanics and Modeling in Mechanobiology, 2021, 20(5): 1709-1722.
|
2. |
Drews T, Loebe M, Hennig E, et al. The ‘Berlin Heart’ assist device. Perfusion, 2000, 15(4): 387-396.
|
3. |
Rogers J G, Aaronson K D, Boyle A J, et al. Continuous flow left ventricular assist device improves functional capacity and quality of life of advanced heart failure patients. Journal of the American College of Cardiology, 2010, 55(17): 1826-1834.
|
4. |
Bourque K, Cotter C, Dague C, et al. Design rationale and preclinical evaluation of the HeartMate 3 left ventricular assist system for hemocompatibility. ASAIO Journal, 2016, 62(4): 375-383.
|
5. |
Bourque K, Gernes D B, Loree H M, et al. HeartMate III: pump design for a centrifugal LVAD with a magnetically levitated rotor. ASAIO Journal, 2001, 47(4): 401-405.
|
6. |
Morshuis M, Schoenbrodt M, Nojiri C, et al. DuraHeart™ magnetically levitated centrifugal left ventricular assist system for advanced heart failure patients. Expert Review of Medical Devices, 2010, 7(2): 173-183.
|
7. |
Foster M. The potential of a Tesla type device as a non pulsatile blood pump. London: Middlesex University, 2006.
|
8. |
Tesla N. Fluid propulsion: US, US1061142A. 1913-05-06 [2025-08-20].
|
9. |
Izraelev V, Weiss W J, Fritz B, et al. A passively suspended Tesla pump left ventricular assist device. Asaio Journal, 2009, 55(6): 556-561.
|
10. |
Miller G E, Etter B D, Dorsi J M. A multiple disk centrifugal pump as a blood flow device. IEEE Transactions on Biomedical Engineering, 1990, 37(2): 157-163.
|
11. |
Yu H. Flow design optimization of blood pumps considering hemolysis. Magdeburg: Otto von Guericke Universität Magdeburg, 2015.
|
12. |
Medvitz R B, Boger D A, Izraelev V, et al. Computational fluid dynamics design and analysis of a passively suspended Tesla pump left ventricular assist device. Artificial Organs, 2011, 35(5): 522-533.
|
13. |
刘晨, 张惟斌, 衡亚光, 等. 人工心脏圆盘泵的流动特性研究. 中国医学物理学杂志, 2023, 40(4): 496-502.
|
14. |
Gurth M I. Rotary disc slurry pump: US, US4773819A. 1988-09-27[2025-08-20].
|
15. |
韩宇明. 叶片式圆盘泵内部流场结构及表面粗糙度影响研究. 成都: 西华大学, 2021.
|
16. |
关醒凡. 现代泵理论与设计. 北京: 中国宇航出版社, 2011: 313-314.
|
17. |
Rasamanikam M, Gurunathan B A, Ishak S A F M, et al. Design and analysis of a nozzle-less twin-entry turbine volute for automobile application. E-Prime-Advances in Electrical Engineering Electronics and Energy, 2024, 7: 100468.
|
18. |
Xue Y, Yang M, Martinez-Botas R F, et al. Unsteady performance of a mixed-flow turbine with nozzled twin-entry volute confronted by pulsating incoming flow. Aerospace Science and Technology, 2019, 95: 105485.
|
19. |
Wei J, Yang M, Xue Y, et al. Study on influence of admissions on loss generation in a twin-entry nozzleless radial turbine. Aerospace Science and Technology, 2022, 128: 107721.
|
20. |
Li Y, Wang H, Xi Y, et al. Multi-indicator analysis of mechanical blood damage with five clinical ventricular assist devices. Computers in Biology and Medicine, 2022, 151 (Pt A): 106271.
|
21. |
Heng Y ,Chen Z ,Jiang Q , et al. Performance and internal flow pattern analyses of a specific centrifugal disc pump under air-water two-phase flow conditions. Energy, 2024, 309: 132981.
|
22. |
Pei Y ,Liu Q ,Wang C , et al. Analytical methods and verification of impeller outlet velocity slip of solid–liquid disc pump with multi-type blades. Arabian Journal for Science and Engineering, 2020, 46(7): 1-13.
|
23. |
Morshed K N, Bark D, Forleo M, et al. Theory to predict shear stress on cells in turbulent blood flow. PloS One, 2014, 9(8): e105357.
|
24. |
Giersiepen M, Wurzinger L J, Opitz R, et al. Estimation of shear stress-related blood damage in heart valve prostheses-in vitro comparison of 25 aortic valves. The International Journal of Artificial Organs, 1990, 13(5): 300-306.
|
25. |
Heuser G, Opitz R. A Couette viscometer for short time shearing of blood. Biorheology, 1980, 17(1-2): 17-24.
|
26. |
Faghih M M, Keith Sharp M. Extending the power-law hemolysis model to complex flows. Journal of Biomechanical Engineering, 2016, 138(12): 124504.
|
27. |
Alemu Y, Bluestein D. Flow‐induced platelet activation and damage accumulation in a mechanical heart valve: numerical studies. Artificial Organs, 2007, 31(9): 677-688.
|
28. |
Ponnaluri S V, Hariharan P, Herbertson L H, et al. Results of the interlaboratory computational fluid dynamics study of the FDA benchmark blood pump. Annals of Biomedical Engineering, 2023, 51(1): 253-269.
|
29. |
刘泽辉. 磁悬浮离心式人工心脏泵设计及性能评价. 济南: 山东大学, 2021.
|
30. |
LaRose J A, Tamez D, Ashenuga M, et al. Design concepts and principle of operation of the HeartWare ventricular assist system. ASAIO Journal, 2010, 56(4): 285-289.
|