| 1. |
Banday M Z, Sameer A S, Nissar S. Pathophysiology of diabetes: An overview. Avicenna J Med, 2020, 10(4): 174-188.
|
| 2. |
Sun H, Saeedi P, Karuranga S, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract, 2022, 183: 109119.
|
| 3. |
Lee R, Wong T Y, Sabanayagam C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis, 2015, 2: 1-25.
|
| 4. |
Lindner M, Arefnia B, Ivastinovic D, et al. Association of periodontitis and diabetic macular edema in various stages of diabetic retinopathy. Clin Oral Investig, 2022, 26(1): 505-512.
|
| 5. |
Davidson J A, Ciulla T A, McGill J B, et al. How the diabetic eye loses vision. Endocrine, 2007, 32(1): 107-116.
|
| 6. |
Ciulla T A, Amador A G, Zinman B. Diabetic retinopathy and diabetic macular edema: Pathophysiology, screening, and novel therapies. Diabetes Care, 2003, 26(9): 2653-2664.
|
| 7. |
Asiri N, Hussain M, Al Adel F, et al. Deep learning based computer-aided diagnosis systems for diabetic retinopathy: A survey. Artif Intell in Med, 2019, 99: 101701.
|
| 8. |
Silberman N, Ahrlich K, Fergus R, et al. Case for automated detection of diabetic retinopathy// AAAI Spring Symposium: Artificial Intelligence for Development. Stanford: AI Access Foundation, 2010: 85-90.
|
| 9. |
Niemeijer M, Ginneken B V, Staal J, et al. Automatic detection of red lesions in digital color fundus photographs. IEEE Trans Med Imaging, 2005, 24(5): 584-592.
|
| 10. |
Casanova R, Saldana S, Chew E Y, et al. Application of random forests methods to diabetic retinopathy classification analyses. PLOS One, 2014, 9(6): e98587.
|
| 11. |
Tariq A, Akram M U, Shaukat A, et al. Automated detection and grading of diabetic maculopathy in digital retinal images. J Digit Imaging, 2013, 26(4): 803-812.
|
| 12. |
Al-Bander B, Al-Nuaimy W, Al-Taee M A, et al. Diabetic macular edema grading based on deep neural networks// Ophthalmic Medical Image Analysis International Workshop. Athens: University of Iowa, 2016: 121-128.
|
| 13. |
Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA, 2016, 316(22): 2402-2410.
|
| 14. |
Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision// 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 2818-2826.
|
| 15. |
Krause J, Gulshan V, Rahimy E, et al. Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy. Ophthalmology, 2018, 125(8): 1264-1272.
|
| 16. |
Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning// Thirty-First AAAI Conference on Artificial Intelligence. San Francisco: AAAI Press, 2017: 4278-4284.
|
| 17. |
Li X, Hu X, Yu L, et al. CANet: Cross-disease attention network for joint diabetic retinopathy and diabetic macular edema grading. IEEE Trans Med Imaging, 2020, 39(5): 1483-1493.
|
| 18. |
Yue T, Yang W, Liao Q. CCNET: Cross coordinate network for joint diabetic retinopathy and diabetic macular edema grading// 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society. Glasgow: IEEE, 2022: 2062-2065.
|
| 19. |
Guo X, Li X, Lin Q, et al. Joint grading of diabetic retinopathy and diabetic macular edema using an adaptive attention block and semisupervised learning. Appl Intell, 2023, 53(13): 16797-16812.
|
| 20. |
Huang G, Liu Z, Maaten L V D, et al. Densely connected convolutional networks// IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2261-2269.
|
| 21. |
Decencière E, Zhang X, Cazuguel G, et al. Feedback on a publicly distributed image database: The Messidor database. Image Anal Stereol, 2014: 231-234.
|
| 22. |
Deng J, Dong W, Socher R, et al. ImageNet: A large-scale hierarchical image database// 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami: IEEE, 2009: 248-255.
|
| 23. |
Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: A simple way to prevent neural networks from overfitting. J Mach Learn Res, 2014, 15(1): 1929-1958.
|
| 24. |
Sánchez C I, Niemeijer M, Dumitrescu A V, et al. Evaluation of a computer-aided diagnosis system for diabetic retinopathy screening on public data. Invest Ophthalmol Vis Sci, 2011, 52(7): 4866-4871.
|
| 25. |
Pires R, Avila S, Jelinek H F, et al. Beyond lesion-based diabetic retinopathy: A direct approach for referral. IEEE J Biomed Health Inform, 2017, 21(1): 193-200.
|
| 26. |
Vo H H, Verma A. New deep neural nets for fine-grained diabetic retinopathy recognition on hybrid color space// 2016 IEEE International Symposium on Multimedia. San Jose: IEEE, 2016: 209-215.
|
| 27. |
Seoud L, Hurtut T, Chelbi J, et al. Red lesion detection using dynamic shape features for diabetic retinopathy screening. IEEE Trans Med Imaging, 2016, 35(4): 1116-1126.
|
| 28. |
Wang Z, Yin Y, Shi J, et al. Zoom-in-Net: Deep mining lesions for diabetic retinopathy detection// Medical Image Computing and Computer Assisted Intervention −MICCAI 2017. Quebec City: Springer International Publishing, 2017: 267-275.
|
| 29. |
Kingma D P, Ba J. Adam: A method for stochastic optimization// Proceedings of the 3rd International Conference on Learning Representations. San Diego: OpenReview.net, 2015: 1-15.
|
| 30. |
Paszke A, Gross S, Chintala S, et al. Automatic differentiation in pytorch// NIPS 2017 Autodiff Workshop. Long Beach: OpenReview.net, 2017: 1-4.
|
| 31. |
Sandler M, Howard A, Zhu M, et al. MobileNetV2: Inverted residuals and linear bottlenecks// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4510-4520.
|
| 32. |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition// 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
|
| 33. |
Selvaraju R R, Cogswell M, Das A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization. Int J Comput Vis, 2020, 128(2): 336-359.
|
| 34. |
Chen Q, Peng Y, Keenan T, et al. A multi-task deep learning model for the classification of age-related macular degeneration. AMIA Jt Summits Transl Sci Proc, 2019, 2019: 505-514.
|
| 35. |
Liu L, Dou Q, Chen H, et al. Multi-Task deep model with margin ranking loss for lung nodule analysis. IEEE Trans Med Imaging, 2020, 39(3): 718-728.
|