1. |
Annen J, Frasso G, van der Lande G J M, et al. Cerebral electrometabolic coupling in disordered and normal states of consciousness. Cell Rep, 2023, 42(8): 112854.
|
2. |
Janiukstyte V, Owen T W, Chaudhary U J, et al. Normative brain mapping using scalp EEG and potential clinical application. Sci Rep, 2023, 13(1): 13442.
|
3. |
Capilla A, Arana L, García-Huéscar M, et al. The natural frequencies of the resting human brain: An MEG-based atlas. NeuroImage, 2022, 258: 119373.
|
4. |
Chen W L, Wagner J, Heugel N, et al. Functional near-infrared spectroscopy and its clinical application in the field of neuroscience: Advances and future directions. Front Neurosci, 2020, 14: 724.
|
5. |
Sun L, Zhao T, Liang X, et al. Human lifespan changes in the brain’s functional connectome. Nat Neurosci, 2025, 28(4): 891-901.
|
6. |
Lucas-Romero J, Rivera-Arconada I, Lopez-Garcia J A. Noise or signal? Spontaneous activity of dorsal horn neurons: patterns and function in health and disease. Pflug Arch Eur J Phy, 2024, 476(8): 1171-1186.
|
7. |
Benhamou J, Quyen M L V, Marrelec G. Time-frequency analysis of event-related brain recordings: Connecting power of evoked potential and inter-trial coherence. IEEE T Bio-Med Eng, 2023, 70(5): 1599-1610.
|
8. |
Uddin L Q. Bring the Noise: Reconceptualizing spontaneous neural activity. Trends Cogn Sci, 2020, 24(9): 734-746.
|
9. |
Pezzulo G, Zorzi M, Corbetta M. The secret life of predictive brains: What’s spontaneous activity for?. Trends Cogn Sci, 2021, 25(9): 730-743.
|
10. |
Sarracino A, Arviv O, Shriki O, et al. Predicting brain evoked response to external stimuli from temporal correlations of spontaneous activity. Phys Rev Res, 2020, 2(3): 033355.
|
11. |
Wainio-Theberge S, Wolff A, Northoff G. Dynamic relationships between spontaneous and evoked electrophysiological activity. Commun Biol, 2021, 4(1): 741.
|
12. |
Myrov V, Siebenhühner F, Juvonen J J, et al. Rhythmicity of neuronal oscillations delineates their cortical and spectral architecture. Commun Biol, 2024, 7(1): 405.
|
13. |
Mahjoory K, Schoffelen J M, Keitel A, et al. The frequency gradient of human resting-state brain oscillations follows cortical hierarchies. Elife, 2020, 9: e53715.
|
14. |
Takahashi K, Glinski B, Salehinejad M A, et al. Induction and stabilization of delta frequency brain oscillations by phase-synchronized rTMS and tACS. Brain Stimul, 2024, 17(5): 1086-1097.
|
15. |
Moreau Q, Parrotta E, Era V, et al. Role of the occipito-temporal theta rhythm in hand visual identification. J Neurophysiol, 2020, 123(1): 167-177.
|
16. |
Pusil S, Zegarra-Valdivia J, Cuesta P, et al. Effects of spaceflight on the EEG alpha power and functional connectivity. Sci Rep, 2023, 13(1): 9489.
|
17. |
Peng J, Zikereya T, Shao Z, et al. The neuromechanical of beta-band corticomuscular coupling within the human motor system. Front Neurosci, 2024, 18: 1441002.
|
18. |
Ichim A M, Barzan H, Moca V V, et al. The gamma rhythm as a guardian of brain health. Elife, 2024, 13: e100238.
|
19. |
Trevino G, Lee J J, Shimony J S, et al. Complexity organization of resting-state functional-MRI networks. Hum Brain Mapp, 2024, 45(12): e26809.
|
20. |
Yeshurun Y, Nguyen M, Hasson U. The default mode network: where the idiosyncratic self meets the shared social world. Nat Rev Neurosci, 2021, 22(3): 181-192.
|
21. |
Samogin J, Marino M, Porcaro C, et al. Frequency-dependent functional connectivity in resting state networks. Hum Brain Mapp, 2020, 41(18): 5187-5198.
|
22. |
Korn U, Krylova M, Heck K L, et al. EEG-microstates reflect auditory distraction after attentive audiovisual perception recruitment of cognitive control networks. Front Syst Neurosci, 2021, 15: 751226.
|
23. |
Kinney-Lang E, Yoong M, Hunter M, et al. Analysis of EEG networks and their correlation with cognitive impairment in preschool children with epilepsy. Epilepsy Behav, 2019, 90: 45-56.
|
24. |
Al-Nuaimi A H, Blūma M, Al-Juboori S S, et al. Robust EEG based biomarkers to detect alzheimer’s disease. Brain Sci, 2021, 11(8): 1026.
|
25. |
Krug S, Müller T, Kayali Ö, et al. Altered functional connectivity in common resting-state networks in patients with major depressive disorder: a resting-state functional connectivity study. J Psychiatr Res, 2022, 155: 33-41.
|
26. |
Colombo M A, Comanducci A, Casarotto S, et al. Beyond alpha power: EEG spatial and spectral gradients robustly stratify disorders of consciousness. Cereb Cortex, 2023, 33(11): 7193-7210.
|
27. |
Liu Y, Zeng W, Pan N, et al. EEG complexity correlates with residual consciousness level of disorders of consciousness. BMC Neuro, 2023, 23(1): 140.
|
28. |
Lewandowska M, Tołpa K, Rogala J, et al. Multivariate multiscale entropy (mMSE) as a tool for understanding the resting-state EEG signal dynamics: The spatial distribution and sex/gender-related differences. Behav Brain Funct, 2023, 19(1): 18.
|
29. |
Donoghue T, Voytek B. Automated meta-analysis of the event-related potential (ERP) literature. Sci Rep, 2022, 12(1): 1867.
|
30. |
Xu M, Jia Y, Qi H, et al. Use of a steady-state baseline to address evoked vs. oscillation models of visual evoked potential origin. NeuroImage, 2016, 134: 204-212.
|
31. |
Fiorini L, Berchicci M, Mussini E, et al. Neural basis of anticipatory multisensory integration. Brain Sci, 2021, 11(7): 843.
|
32. |
Menon V, D’Esposito M. The role of PFC networks in cognitive control and executive function. Neuropsychopharmacology, 2021, 47(1): 90-103.
|
33. |
Kong X, Kong R, Orban C, et al. Sensory-motor cortices shape functional connectivity dynamics in the human brain. Nat Commun, 2021, 12(1): 6373.
|
34. |
Stieger J R, Engel S A, He B. Continuous sensorimotor rhythm based brain computer interface learning in a large population. Sci Data, 2021, 8(1): 98.
|
35. |
Faust T E, Gunner G, Schafer D P. Mechanisms governing activity-dependent synaptic pruning in the developing mammalian CNS. Nat Rev Neurosci, 2021, 22(11): 657-673.
|
36. |
Avitan L, Pujic Z, Mölter J, et al. Spontaneous and evoked activity patterns diverge over development. Elife, 2021, 10: e61942.
|
37. |
Newbold D J, Laumann T O, Hoyt C R, et al. Plasticity and spontaneous activity pulses in disused human brain circuits. Neuron, 2020, 107(3): 580-589.e6.
|
38. |
Yu Q, Fu H, Wang G, et al. Short-term visual experience leads to potentiation of spontaneous activity in mouse superior colliculus. Neurosci Bull, 2021, 37(3): 353-368.
|
39. |
Albertson A J, Landsness E C, Tang M J, et al. Normal aging in mice is associated with a global reduction in cortical spectral power and network-specific declines in functional connectivity. NeuroImage, 2022, 257: 119287.
|
40. |
Yoshimura N, Tsuda H, Aquino D, et al. Age-related decline of sensorimotor integration influences resting-state functional brain connectivity. Brain Sci, 2020, 10(12): 966.
|
41. |
Won J, Nielson K A, Smith J C. Large-scale network connectivity and cognitive function changes after exercise training in older adults with intact cognition and mild cognitive impairment. J Alzheimers Dis Rep, 2023, 7(1): 399-413.
|
42. |
Cui X, Gui W, Miao J, et al. A combined intervention of aerobic exercise and video game in older adults: The efficacy and neural basis on improving mnemonic discrimination. J Gerontol A Biol Sci Med Sci, 2022, 78(8): 1436-1444.
|
43. |
Iemi L, Busch N A, Laudini A, et al. Multiple mechanisms link prestimulus neural oscillations to sensory responses. Elife, 2019, 8: e43620.
|
44. |
Krasich K, Simmons C, O’Neill K, et al. Prestimulus oscillatory brain activity interacts with evoked recurrent processing to facilitate conscious visual perception. Sci Rep, 2022, 12(1): 22126.
|
45. |
Zhou Y J, Iemi L, Schoffelen J M, et al. Alpha oscillations shape sensory representation and perceptual sensitivity. J Neurosci, 2021, 41(46): 9581-9592.
|
46. |
Benwell C S Y, Coldea A, Harvey M, et al. Low pre-stimulus EEG alpha power amplifies visual awareness but not visual sensitivity. Eur J Neurosci, 2021, 55(11-12): 3125-3140.
|
47. |
Jiang Z, An X, Liu S, et al. Beyond alpha band: Prestimulus local oscillation and interregional synchrony of the beta band shape the temporal perception of the audiovisual beep-flash stimulus. J Neural Eng, 2024, 21(3): 036035.
|
48. |
Darch H T, Cerminara N L, Gilchrist I D, et al. Pre-movement changes in sensorimotor beta oscillations predict motor adaptation drive. Sci Rep, 2020, 10(1): 17946.
|
49. |
Tan E, Troller-Renfree S V, Morales S, et al. Theta activity and cognitive functioning: Integrating evidence from resting-state and task-related developmental electroencephalography (EEG) research. Dev Cogn Neurosci, 2024, 67: 101404.
|
50. |
Parto-Dezfouli M, Vezoli J, Bosman C A, et al. Enhanced behavioral performance through interareal gamma and beta synchronization. Cell Rep, 2023, 42(10): 113249.
|
51. |
Sirpal P, Damseh R, Peng K, et al. Multimodal autoencoder predicts fNIRS resting state from EEG signals. Neuroinformatics, 2021, 20(3): 537-558.
|
52. |
Zhang C, Wang Y, Jing X, et al. Brain mechanisms of mental processing: from evoked and spontaneous brain activities to enactive brain activity. Psychoradiology, 2023, 3: kkad010.
|
53. |
Fong A H C, Yoo K, Rosenberg M D, et al. Dynamic functional connectivity during task performance and rest predicts individual differences in attention across studies. NeuroImage, 2019, 188: 14-25.
|
54. |
Patil A U, Ghate S, Madathil D, et al. Static and dynamic functional connectivity supports the configuration of brain networks associated with creative cognition. Sci Rep, 2021, 11(1): 165.
|
55. |
Nickerson L D. Replication of resting state-task network correspondence and novel findings on brain network activation during task fMRI in the human connectome project study. Sci Rep, 2018, 8(1): 17543.
|
56. |
Zhang J, Huang Z, Tumati S, et al. Rest-task modulation of fMRI-derived global signal topography is mediated by transient coactivation patterns. Plos Biol, 2020, 18(7): e3000733.
|
57. |
Chen J, Ke Y, Ni G, et al. Evidence for modulation of EEG microstates by mental workload levels and task types. Hum Brain Mapp, 2023, 45(1): e26552.
|
58. |
Wan W, Gao Z, Zhang Q, et al. Resting state EEG complexity as a predictor of cognitive performance. Physica A, 2023, 624: 128952.
|
59. |
Phadikar S, Pusuluri K, Iraji A, et al. Integrating fMRI spatial network dynamics and EEG spectral power: insights into resting state connectivity. Front Neurosci, 2025, 19: 1484954.
|
60. |
Gholamipourbarogh N, Vahid A, Mückschel M, et al. Deep learning on independent spatial EEG activity patterns delineates time windows relevant for response inhibition. Psychophysiology, 2023, 60(10): e14328.
|
61. |
Osher D E, Brissenden J A, Somers D C. Predicting an individual’s dorsal attention network activity from functional connectivity fingerprints. J Neurophysiol, 2019, 122(1): 232-240.
|
62. |
Cohen A D, Chen Z, Parker Jones O, et al. Regression-based machine-learning approaches to predict task activation using resting-state fMRI. Hum Brain Mapp, 2019, 41(3): 815-826.
|
63. |
Lacosse E, Scheffler K, Lohmann G, et al. Jumping over baselines with new methods to predict activation maps from resting-state fMRI. Sci Rep, 2021, 11(1): 3480.
|
64. |
Lin L, Chang D, Song D, et al. Lower resting brain entropy is associated with stronger task activation and deactivation. NeuroImage, 2022, 249: 118875.
|
65. |
Afrashteh N, Inayat S, Bermudez-Contreras E, et al. Spatiotemporal structure of sensory-evoked and spontaneous activity revealed by mesoscale imaging in anesthetized and awake mice. Cell Rep, 2021, 37(10): 110081.
|
66. |
Liu M, Liang Y, Song C, et al. Cortex-wide spontaneous activity non-linearly steers propagating sensory-evoked activity in awake mice. Cell Rep, 2022, 41(10): 111740.
|
67. |
Liu Y, Nour M M, Schuck N W, et al. Decoding cognition from spontaneous neural activity. Nat Rev Neurosci, 2022, 23(4): 204-214.
|