• 1. NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, P. R. China;
  • 2. Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, P. R. China;
SONG Tao, Email: stomfs@163.com
Export PDF Favorites Scan Get Citation

This paper aims to explore the effect of electrical stimulation of triboelectric nanogenerators (TENGs) on the osteogenic and other biological behaviors of mouse embryonic osteoblast precursor cells (MC3T3-E1 cells) on titanium surfaces. First, an origami-type TENG was fabricated, and its electrical output performance was tested. The optimal current of the generator and the feasibility of the experiment were verified by the CCK-8 assay and scratch assay. At the optimal current, the osteogenic conditions of the cells in each group were determined by quantitative analysis of the total protein content, alkaline phosphatase (ALP) activity, and alizarin red staining (ARS) on the titanium surface. Finally, the adhesion and spreading of cells on the titanium surface after electrical stimulation were observed. The results showed that the TENG had good electrical output performance, with an open-circuit voltage of 65 V and a short-circuit current of 42 μA. Compared with the rest of the current, a current strength of 30 μA significantly improved cell proliferation and migration, osteogenesis, and adhesion and spreading capabilities. The above results confirm the safety and operability of TENG in biomedical applications, laying the foundation for future TENG applications in reducing the time of bone integration around titanium implants after surgery.

Copyright © the editorial department of Journal of Biomedical Engineering of West China Medical Publisher. All rights reserved