• 1. University of Electronic Science and Technology of China, School of Electronic Science and Engineering, Chengdu SiChuan 100084, P. R. China;
LAI Dakun, Email: dklai@uestc.edu.cn
Export PDF Favorites Scan Get Citation

Automated detection of myocardial infarction (MI) is crucial for preventing sudden cardiac death and enabling early intervention in cardiovascular diseases. This paper proposes a deep learning framework based on a lightweight convolutional neural network (CNN) combined with one-dimensional gradient-weighted class activation mapping (1D Grad-CAM) for the automated detection of MI and the visualization of key waveform features in single-lead electrocardiograms (ECGs). The proposed method was evaluated using a total of 432 records from the Physikalisch-Technische Bundesanstalt Diagnostic ECG Database (PTBDB) and the Normal Sinus Rhythm Database (NSRDB), comprising 334 MI and 98 normal ECGs. Experimental results demonstrated that the model achieved an accuracy, sensitivity, and specificity of 95.75%, 96.03%, and 95.47%, respectively, in MI detection. Furthermore, the visualization results indicated that the model’s decision-making process aligned closely with clinically critical features, including pathological Q waves, ST-segment elevation, and T-wave inversion. This study confirms that the proposed deep learning algorithm combined with explainable technology performs effectively in the intelligent diagnosis of MI and the visualization of critical ECG waveforms, demonstrating its potential as a useful tool for early MI risk assessment and computer-aided diagnosis.

Copyright © the editorial department of Journal of Biomedical Engineering of West China Medical Publisher. All rights reserved