1. |
Lai A, Tran A, Nghiemphu PL, et al. Phase Ⅱ study of bevacizumab plus temozolomide during and after radiation therapy for patients with newly diagnosed glioblastoma multiforme[J]. J Clin Oncol, 2011, 29(2): 142-148.
|
2. |
Baban B, Chandler PR, Sharma MD, et al. IDO activates regulatory T cells and blocks their conversion into Th17-like T cells[J]. J Immunol, 2009, 183(4): 2475-2483.
|
3. |
Soliman H, Mediavilla-Varela M, Antonia S. Indoleamine 2,3-dioxygenase is it an immune suppressor[J]. J Cancer, 2010, 16(4): 354–359.
|
4. |
Yan Y, Zhang GX, Gran B, et al. IDO upregulates regulatory T cells via tryptophan catabolite and suppresses encephalitogenic T cell responses in experimental autoimmune encephalomyelitis[J]. J Immunol, 2010, 185(10): 5953-5961.
|
5. |
Munn DH, Sharma MD, Baban B, et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase[J]. Immunity, 2005, 22(5): 633-642.
|
6. |
Sharma MD, Hou DY, Baban B, et al. Reprogrammed foxp3(+) regulatory T cells provide essential help to support cross-presentation and CD8(+) T cell priming in naive mice[J]. Immunity, 2010, 33(6): 942-954.
|
7. |
Li Y, Tredget EE, Ghahary A. Cell surface expression of MHC class I antigen is suppressed in indoleamine 2,3-dioxygenase genetically modified keratinocytes: implications in allogeneic skin substitute engraftment[J]. Hum Immunol, 2004, 65(2): 114-123.
|
8. |
Shields JD, Kourtis IC, Tomei AA, et al. Induction of lymphoidlike stroma and immune escape by tumors that Express the chemokine CCL21[J]. Science, 2010, 328(5979): 749-752.
|
9. |
Llambi F, Green DR. Apoptosis and oncogenesis: give and take in the BCL-2 family[J]. Curr Opin Genet Dev, 2011, 21(1): 12-20.
|
10. |
Ribechini E, Greifenberg V, Sandwick S, et al. Subsets, expansion and activation of myeloid-derived suppressor cells[J]. Med Microbiol Immunol, 2010, 199(3): 273-281.
|
11. |
Movahedi K, Laoui D, Gysemans C, et al. Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C (high) monocytes[J]. Cancer Res, 2010, 70(14): 5728-5739.
|
12. |
Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion[J]. Science, 2011, 331(6024): 1565-1570.
|
13. |
Sa QD, Peggs KS, Simpson TR, et al. Shifting the equilibrium in cancer immunoediting: from tumor tolerance to eradication[J]. Immunol Rev, 2011, 241(1): 104-118.
|
14. |
Zhai H, Heppner FL, Tsirka SE. Microglia/macrophages promote glioma progression[J]. Glia, 2011, 59(3): 472-485.
|
15. |
Fletcher AL, Malhotra D, Turley SJ. Lymph node stroma broaden the peripheral tolerance paradigm[J]. Trends Immunol, 2011, 32(1): 12-18.
|
16. |
Fabry Z, Schreiber HA, Harris MG, et al. Sensing the microenvironment of the central nervous system: immune cells in the central nervous system and their pharmacological manipulation[J]. Curr Opin Pharmacol, 2008, 8(4): 496-507.
|
17. |
Kaur G, Han SJ, Yang I, et al. Microglia and central nervous system immunity[J]. Neurosurg Clin N Am, 2010, 21(1): 43-51.
|
18. |
Wesolowska A, Kwiatkowska A, Slomnicki L, et al. Microglia-derived TGF-β as an important regulator of glioblastoma invasion-an inhibition of TGF-β-dependent effects by shRNA against human TGF-β typeⅡ receptor[J]. Oncogene, 2008, 27(7): 918-930.
|
19. |
Merzak A, McCrea S, Koocheckpour S, et al. Control of human glioma cell growth, migration and invasion in vitro by transforming growth factor beta 1[J]. Br J Cancer, 1994, 70(2): 199-203.
|
20. |
Wick W, Platten M, Weller M. Glioma cell invasion: regulation of metalloproteinase activity by TGF-β[J]. J Neurooncol, 2001, 53(2): 177-185.
|
21. |
Wu A, Wei J, Kong LY, et al. Glioma cancer stem cells induce immunosuppressive macrophages/microglia[J]. Neuro Oncol, 2010, 12(11): 1113-1125.
|
22. |
Inaba T, Ino K, Kajiyama H, et al. Role of the immunosuppressive enzyme indoleamine 2,3-dioxygenase in the progression of ovarian carcinoma[J]. Gynecol Oncol, 2009, 115(2): 185-192.
|
23. |
Nakamura T, Shima T, Saeki A, et al. Expression of indoleamine 2, 3-dioxygenase and the recruitment of Foxp3-expressing regulatory T cells in the development and progression of uterine cervical cancer[J]. Cancer Sci, 2007, 98(6): 874-881.
|
24. |
Brandacher G, Perathoner A, Ladurner R, et al. Prognostic value of indoleamine 2,3-dioxygenase expression in colorectal cancer: effect on tumor-infiltrating T cells[J]. Clin Cancer Res, 2006, 12(4): 1144-1151.
|
25. |
Ino K, Yoshida N, Kajiyama H, et al. Indoleamine 2,3-dioxygenase is a novel prognostic indicator for endometrial cancer[J]. Br J Cancer, 2006, 95(11): 1555-1561.
|
26. |
Pan K, Wang H, Chen MS, et al. Expression and prognosis role of indoleamine 2,3-dioxygenase in hepatocellular carcinoma[J]. J Cancer Res Clin Oncol, 2008, 134(11): 1247-1253.
|
27. |
Ishio T, Goto S, Tahara K, et al. Immunoactivative role of indoleamine 2,3-dioxygenase in human hepatocellular carcinoma[J]. J Gastroenterol Hepatol, 2004, 19(3): 319-326.
|
28. |
Riesenberg R, Weiler C, Spring O, et al. Expression of indoleamine 2,3-dioxygenase in tumor endothelial cells correlates with long-term survival of patients with renal cell carcinoma[J]. Clin Cancer Res, 2007, 13(23): 6993-7002.
|
29. |
Batista CE, Juhász C, Muzik O, et al. Imaging correlates of differential expression of indoleamine 2,3-dioxygenase in human brain tumors[J]. Mol Imaging Biol, 2009, 11(6): 460-466.
|
30. |
Uyttenhove C, Pilotte L, Théate I, et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase[J]. Nat Med, 2003, 9(10): 1269-1274.
|
31. |
Wolff JE, Wagner S, Reinert C, et al. Maintenance treatment with interferon-gamma and low-dose cyclophosphamide for pediatric high-grade glioma[J]. J Neurooncol, 2006, 79(3): 315-321.
|
32. |
Miyazaki T, Moritake K, Yamada K, et al. Indoleamine 2,3-dioxygenase as a new target for malignant glioma therapy. Laboratory investigation[J]. J Neurosurg, 2009, 111(2): 230-237.
|