1. |
Hanahan D, Weinberg RA. Hallmarks of cancer:the next generation[J]. Cell, 2011, 144(5):646-674.
|
2. |
Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell[J]. Nat Med, 1997, 3(7):730-737.
|
3. |
Wang R, Chadalavada K, Wilshire J, et al. Glioblastoma stem-like cells give rise to tumour endothelium[J]. Nature, 2010, 468(7325):829-833.
|
4. |
Chaffer CL, Brueckmann I, Scheel C, et al. Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state[J]. Proc Natl Acad Sci USA, 2011, 108(19):7950-7955.
|
5. |
Korkaya H, Liu S, Wicha MS. Breast cancer stem cells, cytokine networks, and the tumor microenvironment[J]. J Clin Invest, 2011, 121(10):3804-3809.
|
6. |
Polyak K, Haviv I, Campbell IG. Co-evolution of tumor cells and their microenvironment[J]. Trends Genet, 2009, 25(1):30-38.
|
7. |
Coussens LM, Werb Z. Inflammation and cancer[J]. Nature, 2002, 420(6917):860-867.
|
8. |
Grivennikov SI, Greten FR, Immunity KM. Inflammation, and cancer[J]. Cell, 2010, 140(6):883-899.
|
9. |
Dvorak HF. Tumors:wounds that do not heal. Similarities between tumor stroma generation and wound healing[J]. N Engl J Med, 1986, 315(26):1650-1659.
|
10. |
Yang X, Hou J, Han Z, et al. One cell, multiple roles:contribution of mesenchymal stem cells to tumor development in tumor microenvironment[J]. Cell Biosci, 2013, 3(1):5.
|
11. |
Bianchi G, Borgonovo G, Pistoia V, et al. Immunosuppressive cells and tumour microenvironment:focus on mesenchymal stem cells and myeloid derived suppressor cells[J]. Histol Histopathol, 2011, 26(7):941-951.
|
12. |
Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999, 284(5411):143-147.
|
13. |
Shinojima N, Hossain A, Takezaki T, et al. TGF-β mediates homing of bone marrow-derived human mesenchymal stem cells to glioma stem cells[J]. Cancer Res, 2013, 73(7):2333-2344.
|
14. |
Liu S, Ginestier C, Ou SJ, et al. Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks[J]. Cancer Res, 2011, 71(2):614-624.
|
15. |
Li HJ, Reinhardt F, Herschman HR, et al. Cancer-stimulated mesenchymal stem cells create a carcinoma stem cell niche via prostaglandin E2 signaling[J]. Cancer Discov, 2012, 2(9):840-855.
|
16. |
Mclean K, Gong Y, Choi Y, et al. Human ovarian carcinoma-associated mesenchymal stem cells regulate cancer stem cells and tumorigenesis via altered BMP production[J]. J Clin Invest, 2011, 121(8):3206-3219.
|
17. |
Gabbiani G, Majno G. Dupuytren's contracture:fibroblast contraction? An ultrastructural study[J]. Am J Pathol, 1972, 66(1):131-146.
|
18. |
Farmer P, Bonnefoi H, Anderle P, et al. A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer[J]. Nat Med, 2009, 15(1):68-74.
|
19. |
Finak G, Bertos N, Pepin F, et al. Stromal gene expression predicts clinical outcome in breast cancer[J]. Nat Med, 2008, 14(5):518-527.
|
20. |
Vermeulen L, Melo FD, Van Der Heijden M, et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment[J]. Nat Cell Biol, 2010, 12(5):468-U121.
|
21. |
Fillmore CM, Gupta PB, Rudnick JA, et al. Estrogen expands breast cancer stem-like cells through paracrine FGF/Tbx3 signaling[J]. Proc Natl Acad Sci USA, 2010, 107(50):21737-21742.
|
22. |
Orimo A, Gupta PB, Sgroi DC, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion[J]. Cell, 2005, 121(3):335-348.
|
23. |
Jung MJ, Rho JK, Kim YM, et al. Upregulation of CXCR4 is functionally crucial for maintenance of stemness in drug-resistant non-small cell lung cancer cells[J]. Oncogene, 2013, 32(2):209-221.
|
24. |
Mantovani A, Sica A. Macrophages, innate immunity and cancer:balance, tolerance, and diversity[J]. Curr Opin Immunol, 2010, 22(2):231-237.
|
25. |
Fischer C, Jonckx B, Mazzone M, et al. Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels[J]. Cell, 2007, 131(3):463-475.
|
26. |
Mitchem JB, Brennan DJ, Knolhoff BL, et al. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses[J]. Cancer Res, 2013, 73(3):1128-1141.
|
27. |
Fan QM, Jing YY, Yu GF, et al. Tumor-associated macrophages promote cancer stem cell-like properties via transforming growth factor-beta1-induced epithelial-mesenchymal transition in hepatocellular carcinoma[J]. Cancer Lett, 2014, 352(2):160-168.
|
28. |
Yang J, Liao D, Chen C, et al. Tumor-associated macrophages regulate murine breast cancer stem cells through a novel paracrine EGFR/Stat3/Sox-2 signaling pathway[J]. Stem Cells, 2013, 31(2):248-258.
|
29. |
Ding J, Jin W, Chen C, et al. Tumor associated macrophage×cancer cell hybrids May acquire cancer stem cell properties in breast cancer[J]. PLoS One, 2012, 7(7):e41942.
|
30. |
Jinushi M, Chiba S, Yoshiyama HA, et al. Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells[J]. Proc Natl Acad Sci USA, 2011, 108(30):12425-12430.
|
31. |
Yu X, Li H, Ren X. Interaction between regulatory T cells and cancer stem cells[J]. Int J Cancer, 2012, 131(7):1491-1498.
|
32. |
Peñuelas S, Anido J, Prieto-Sánchez RM, et al. TGF-beta increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma[J]. Cancer Cell, 2009, 15(4):315-327.
|
33. |
Wei J, Barr J, Kong LY, et al. Glioma-associated cancer-initiating cells induce immunosuppression[J]. Clin Cancer Res, 2010, 16(2):461-473.
|
34. |
Kerbel RS. Tumor angiogenesis[J]. N Engl J Med, 2008, 358(19):2039-2049.
|
35. |
Ping YF, Bian XW. Consice review:contribution of cancer stem cells to neovascularization[J]. Stem Cells, 2011, 29(6):888-894.
|
36. |
Bhati R, Patterson C, Livasy CA, et al. Molecular characterization of human breast tumor vascular cells[J]. Am J Pathol, 2008, 172(5):1381-1390.
|
37. |
Bao S, Wu Q, Sathornsumetee S, et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor[J]. Cancer Res, 2006, 66(16):7843-7848.
|
38. |
Grange C, Tapparo M, Collno F, et al. Microvesicles released from human renal cancer stem cells stiulate angiogenesis and formation of lung pre-metastatic niche[J]. Cancer Res, 2011, 71(15):5346-5356.
|
39. |
Folkins C, Shaked Y, Man S, et al. Glioma tumor stem-like cells promote tumor angiogenesis and vasculogenesis via vascular endothelial growth factor and stromal-derived factor 1[J]. Cancer Res, 2009, 69(18):7243-7251.
|
40. |
Calabrese C, Poppleton H, Kocak M, et al. A perivascular niche for brain tumor stem cells[J]. Cancer Cell, 2007, 11(1):69-82.
|
41. |
Pàez-Ribes M, Allen E, Hudock J, et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis[J]. Cancer Cell, 2009, 15(3):220-231.
|
42. |
Lyden D, Hattori K, Dias S, et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth[J]. Nat Med, 2001, 7(11):1194-1201.
|
43. |
Lu P, Weaver VM, Werb Z. The extracellular matrix:a dynamic niche in cancer progression[J]. J Cell Biol, 2012, 196(4):395-406.
|
44. |
Lu P, Takai K, Weaver VM, et al. Extracellular matrix degradation and remodeling in development and disease[J]. Cold Spring Harb Perspect Biol, 2011, 3(12):pii:a005058.
|
45. |
Wong GS, Rustgi AK. Matricellular proteins:priming the tumour microenvironment for cancer development and metastasis[J]. Br J Cancer, 2013, 108(4):755-761.
|
46. |
Li L, Cole J, Margolin DA. Cancer stem cell and stromal microenvironment[J]. Ochsner J, 2013, 13(1):109-118.
|
47. |
Li L, Xie T. Stem cell niche:structure and function[J]. Annu Rev Cell Dev Biol, 2005, 21:605-631.
|
48. |
Casazza A, Di Conza G, Wenes M, et al. Tumor stroma:a complexity dictated by the hypoxic tumor microenvironment[J]. Oncogene, 2014, 33(14):1743-1754.
|
49. |
Li P, Zhou C, Xu L, et al. Hypoxia enhances stemness of cancer stem cells in glioblastoma:an in vitro study[J]. Int J Med Sci, 2013, 10(4):399-407.
|
50. |
Keith B, Simon MC. Hypoxia-inducible factors, stem cells, and cancer[J]. Cell, 2007, 129(3):465-472.
|
51. |
Raval RR, Lau KW, Tran MG, et al. Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma[J]. Mol Cell Biol, 2005, 25(13):5675-5686.
|
52. |
Covello KL, Kehler J, Yu H, et al. HIF-2alpha regulates Oct-4:effects of hypoxia on stem cell function, embryonic development, and tumor growth[J]. Genes Dev, 2006, 20(5):557-570.
|
53. |
Meissner A, Wernig M, Jaenisch R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells[J]. Nat Biotechnol, 2007, 25(10):1177-1181.
|
54. |
Conley SJ, Gheordunescu E, Kakarala P, et al. Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia[J]. Proc Natl Acad Sci USA, 2012, 109(8):2784-2789.
|
55. |
Gustafsson MV, Zheng X, Pereira T, et al. Hypoxia requires notch signaling to maintain the undifferentiated cell state[J]. Dev Cell, 2005, 9(5):617-628.
|
56. |
Heddleston JM, Li Z, Mclendon RE, et al. The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype[J]. Cell Cycle, 2009, 8(20):3274-3284.
|