1. |
Binshtok AM, Bean BP, Woolf CJ. Inhibition of nociceptors by TRPV1-mediated entry of impermeant sodium channel blockers[J]. Nature, 2007, 449(7162):U13-607.
|
2. |
Becker DE, Reed KL. Local anesthetics:review of pharmacological considerations[J]. Anesth Prog, 2012, 59(2):90-101; quiz 102-103.
|
3. |
Strichartz GR. The inhibition of sodium currents in myelinated nerve by quaternary derivatives of lidocaine[J]. J Gen Physiol, 1973, 62(1):37-57.
|
4. |
Sagie I, Kohane DS. Prolonged sensory-selective nerve blockade[J]. Proc Natl Acad Sci USA, 2010, 107(8):3740-3745.
|
5. |
Cheung HM, Lee SM, Macleod BA, et al. A comparison of the systemic toxicity of lidocaine versus its quaternary derivative QX-314 in mice[J]. Can J Anaesth, 2011, 58(5):443-450.
|
6. |
Schwarz SK, Cheung HM, Ries CR, et al. Lumbar intrathecal administration of the quaternary lidocaine derivative, QX-314, produces irritation and death in mice[J]. Anesthesiology, 2010, 113(2):438-444.
|
7. |
Caterina MJ, Schumacher MA, Tominaga M, et al. The capsaicin receptor:a heat-activated ion channel in the pain pathway[J]. Nature, 1997, 389(6653):816-824.
|
8. |
Luo XJ, Peng J, Li YJ. Recent advances in the study on capsaicinoids and capsinoids[J]. Eur J Pharmacol, 2011, 650(1):1-7.
|
9. |
Cao E, Cordero-Morales JF, Liu B, et al. TRPV1 channels are intrinsically heat sensitive and negatively regulated by phosphoinositide lipids[J]. Neuron, 2013, 77(4):667-679.
|
10. |
Rivera-Acevedo RE, Pless SA, Schwarz SK, et al. Expression-dependent pharmacology of transient receptor potential vanilloid subtype 1 channels in Xenopus laevis oocytes[J]. Channels (Austin), 2013, 7(1):47-50.
|
11. |
Nagy I, Friston D, Valente JS, et al. Pharmacology of the capsaicin receptor, transient receptor potential vanilloid type-1 ion channel[J]. Prog Drug Res, 2014, 68(8):39-76.
|
12. |
Wong GY, Gavva NR. Therapeutic potential of vanilloid receptor TRPV1 agonists and antagonists as analgesics:recent advances and setbacks[J]. Brain Res Rev, 2009, 60(1):267-277.
|
13. |
Morales-Lázaro SL, Simon SA, Rosenbaum T. The role of endogenous molecules in modulating pain through transient receptor potential vanilloid 1 (TRPV1)[J]. J Physiol, 2013, 591(Pt 13):3109-3121.
|
14. |
Alawi K, Keeble J. The paradoxical role of the transient receptor potential vanilloid 1 receptor in inflammation[J]. Pharmacol Ther, 2010, 125(2):181-195.
|
15. |
Baylie RL, Brayden JE. TRPV1 channels and vascular function[J]. Acta Physiology, 2011, 203(1):99-116.
|
16. |
Fu M, Xie Z, Zuo H. TRPV1:a potential target for antiepileptogenesis[J]. Med Hypotheses, 2009, 73(1):100-102.
|
17. |
Binshtok AM, Gerner P, Oh SB, et al. Coapplication of lidocaine and the permanently charged sodium channel blocker QX-314 produces a long-lasting nociceptive blockade in rodents[J]. Anesthesiology, 2009, 111(1):127-137.
|
18. |
Priest BT. Future potential and status of selective sodium channel blockers for the treatment of pain[J]. Curr Opin Drug Discov Devel, 2009, 12(5):682-692.
|
19. |
Roberson DP, Binshtok AM, Blasl F, et al. Targeting of sodium channel blockers into nociceptors to produce long-duration analgesia:a systematic study and review[J]. Br J Pharmacol, 2011, 164(1):48-58.
|
20. |
Davies JW, Hainsworth AH, Guerin CJ, et al. Pharmacology of capsaicin-, anandamide-, and N-arachidonoyl-dopamine-evoked cell death in a homogeneous transient receptor potential vanilloid subtype 1 receptor population[J]. Br J Anaesth, 2010, 104(5):596-602.
|
21. |
Zhang XF, Shieh CC, Chapman ML, et al. A-887826 is a structurally novel, potent and voltage-dependent Na(v)1.8 sodium channel blocker that attenuates neuropathic tactile allodynia in rats[J]. Neuropharmacology, 2010, 59(3):201-207.
|
22. |
Lim TK, Macleod BA, Ries CR, et al. The quaternary lidocaine derivative, QX-314, produces long-lasting local anesthesia in animal models in vivo[J]. Anesthesiology, 2007, 107(2):305-311.
|
23. |
Zhou C, Gan J, Liu J, et al. The interaction between emulsified isoflurane and lidocaine is synergism in intravenous regional anesthesia in rats[J]. Anesth Analg, 2011, 113(2):245-250.
|
24. |
Zhou C, Liang P, Liu J, et al. Emulsified isoflurane enhances thermal transient receptor potential vanilloid-1 channel activation-mediated sensory/nociceptive blockade by QX-314[J]. Anesthesiology, 2014, 121(2):280-289.
|
25. |
Zhou C, Wu W, Liu J, et al. Inhibition of voltage-gated sodium channels by emulsified isoflurane may contribute to its subarachnoid anesthetic effect in beagle dogs[J]. Reg Anesth Pain Med, 2011, 36(6):553-559.
|
26. |
Hofmann ME, Largent-Milnes TM, Fawley JA, et al. External QX-314 inhibits evoked cranial primary afferent synaptic transmission Independent of TRPV1[J]. J Neurophysiol, 2014, 112(11):2697-2706.
|
27. |
Liu H, Zhang HX, Hou HY, et al. Acid solution is a suitable medium for introducing QX-314 into nociceptors through TRPV1 channels to produce sensory-specific analgesic effects[J]. PLoS One, 2011, 6(12):e29395.
|
28. |
Butterworth JF, Strichartz GR. Molecular mechanisms of local anesthesia:a review[J]. Anesthesiology, 1990, 72(4):711-734.
|
29. |
Puopolo M, Binshtok AM, Yao GL, et al. Permeation and block of TRPV1 channels by the cationic lidocaine derivative QX-314[J]. J Neurophysiol, 2013, 109(7):1704-1712.
|
30. |
Rivera-Acevedo RE, Pless SA, Ahern CA, et al. The quaternary lidocaine derivative, QX-314, exerts biphasic effects on transient receptor potential vanilloid subtype 1 channels in vitro[J]. Anesthesiology, 2011, 114(6):1425-1434.
|
31. |
Lennertz RC, Kossyreva EA, Smith AK, et al. TRPA1 mediates mechanical sensitization in nociceptors during inflammation[J]. PLoS One, 2012, 7(8):e43597.
|
32. |
Leffler A, Fischer MJ, Rehner D, et al. The vanilloid receptor TRPV1 is activated and sensitized by local anesthetics in rodent sensory neurons[J]. J Clin Invest, 2008, 118(2):763-776.
|
33. |
Nakagawa H, Hiura A. Comparison of the transport of QX-314 through TRPA1, TRPM8, and TRPV1 channels[J]. J Pain Res, 2013, 6:223-230.
|