1. |
Kerr JF, Wyllie AH, Currie AR. Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics[J]. Br J Cancer, 1972, 26(4):239-257.
|
2. |
Kiraz Y, Adan A, Kartal YM, et al. Major apoptotic mechanisms and genes involved in apoptosis[J]. Tumor Biol, 2016, 37(4):4235-4251.
|
3. |
Fuchs Y, Steller H. Programmed cell death in animal development and disease[J]. Cell, 2011, 147(4):742-758.
|
4. |
Kroemer G, El-Deiry WS, Golstein P, et al. Classification of cell death:recommendations of the nomenclature committee on cell death[J]. Cell Death Differ, 2005, 12(Suppl 2):1463-1467.
|
5. |
Goossens V, Grooten J, De Vos K, et al. Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity[J]. Proc Natl Acad Sci USA, 1995, 92(18):8115-8159.
|
6. |
Hirsch T, Marchetti P, Susin S, et al. The apoptosis-necrosis paradox.Apoptogenic proteases activated after mitochondrial permeability transition determine the mode of cell death[J]. Oncogene, 1997, 15(13):1573-1581.
|
7. |
Holler N, Zaru R, Micheau O, et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule[J]. Nat Immunol, 2000, 1(6):489-495.
|
8. |
Degterev A, Huang ZH, Boyce M, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury[J]. Nat Chem Biol, 2005, 1(2):112-119.
|
9. |
Kroemer G, Galluzzi L, Vandenabeele P, et al. Classification of cell death:recommendations of the nomenclature committee on cell death 2009[J]. Cell Death Differ, 2009, 16(1):3-11.
|
10. |
Vercammen D, Brouckaert G, Denecker G, et al. Dual signaling of the Fas receptor:initiation of both apoptotic and necrotic cell death pathways[J]. J Exp Med, 1998, 188(5):919-930.
|
11. |
Laster SM, Wood JG, Gooding LR. Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis[J]. J Immunol, 1988, 141(8):2629-2634.
|
12. |
Vercammen D, Beyaert R, Denecker G, et al. Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor[J]. J Exp Med, 1998, 187(9):1477-1485.
|
13. |
Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes[J]. Cell, 2003, 114(2):181-190.
|
14. |
Hacker H, Karin M. Regulation and function of IKK and IKK-related kinases[J]. Sci STKE, 2006(357):re13.
|
15. |
Csomos RA, Brady GF, Duckett CS. Enhanced cytoprotective effects of the inhibitor of apoptosis protein cellular IAP1 through stabilization with TRAF2[J]. J Biol Chem, 2009, 284(31):20531-20539.
|
16. |
Bertrand MJ, Milutinovic S, Dickson KM, et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination[J]. Mol Cell, 2008, 30(6):689-700.
|
17. |
Alvarez SE, Harikumar KB, Hait NC, et al. Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2[J]. Nature, 2010, 465(7301):1084-1088.
|
18. |
Cho YS, Challa S, Moquin D, et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation[J]. Cell, 2009, 137(6):1112-1123.
|
19. |
He S, Wang L, Miao L, et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha[J]. Cell, 2009, 137(6):1100-1111.
|
20. |
O'donnell MA, Legarda-Addison D, Skountzos P, et al. Ubiquitination of RIP1 regulates an NF-kappa B Independent cell-death Switch in TNF signaling[J]. Current Biology, 2007, 17(5):418-424.
|
21. |
Ting AT, Pimentel-Muinos FX, Seed B. RIP mediates tumor necrosis factor receptor 1 activation of NF-kappaB but not Fas/APO-1-initiated apoptosis[J]. EMBO J, 1996, 15(22):6189-6196.
|
22. |
Hitomi J, Christofferson DE, Ng A, et al. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway[J]. Cell, 2008, 135(7):1311-1323.
|
23. |
Shembade N, Ma A, Harhaj EW. Inhibition of NF-kappaB signaling by A20 through disruption of ubiquitin enzyme complexes[J]. Science, 2010, 327(5969):1135-1139.
|
24. |
Enesa K, Zakkar M, Chaudhury H, et al. NF-kappaB suppression by the deubiquitinating enzyme cezanne:a novel negative feedback loop in pro-inflammatory signaling[J]. J Biol Chem, 2008, 283(11):7036-7045.
|
25. |
Xu XS, Chua CC, Zhang M, et al. The role of PARP activation in glutamate-induced necroptosis in HT-22 cells[J]. Brain Res, 2010(1343):206-212.
|
26. |
Feng SS, Yang YH, Mei YD, et al. Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain[J]. Cell Signal, 2007, 19(10):2056-2067.
|
27. |
Lin Y, Devin A, Rodriguez Y, et al. Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis[J]. Genes Dev, 1999, 13(19):2514-2526.
|
28. |
Osborn SL, Diehl G, Han SJ, et al. Fas-associated death domain (FADD) is a negative regulator of T-cell receptor-mediated necroptosis[J]. Proc Natl Acad Sci USA, 2010, 107(29):13034-13039.
|
29. |
Lin Y, Choksi S, Shen HM, et al. Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation[J]. J Biol Chem, 2004, 279(11):10822-10828.
|
30. |
Declercq W, Vanden Berghe T, Vandenabeele P. RIP kinases at the crossroads of cell death and survival[J]. Cell, 2009, 138(2):229-232.
|
31. |
Wang L, Du F, Wang X. TNF-alpha induces two distinct caspase-8 activation pathways[J]. Cell, 2008, 133(4):693-703.
|
32. |
Zhang DW, Shao J, Lin J, et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis[J]. Science, 2009, 325(5938):332-336.
|
33. |
Sun XQ, Yin JP, Starovasnik MA, et al. Identification of a novel homotypic interaction motif required for the phosphorylation of receptor-interacting protein (RIP) by RIP3[J]. J Biol Chem, 2002, 277(11):9505-9511.
|
34. |
Upton JW, Kaiser WJ, Mocarski ES. Virus inhibition of RIP3-dependent necrosis[J]. Cell Host Microbe, 2010, 7(4):302-313.
|
35. |
Zhang DW, Zheng M, Zhao J, et al. Multiple death pathways in TNF-treated fibroblasts:RIP3-and RIP1-dependent and Independent routes[J]. Cell Res, 2011, 21(2):368-371.
|
36. |
Sun L, Wang H, Wang Z, et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase[J]. Cell, 2012, 148(1/2):213-227.
|
37. |
Zhao J, Jitkaew S, Cai ZY, et al. Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis[J]. Proc Natl Acad Sci USA, 2012, 109(14):5322-5327.
|
38. |
Mates JM, Segura JA, Campos-Sandoval JA, et al. Glutamine homeostasis and mitochondrial dynamics[J]. Int J Biochem Cell Biol, 2009, 41(10):2051-2061.
|
39. |
Albrecht J, Norenberg MD. Glutamine:a Trojan horse in ammonia neurotoxicity[J]. Hepatology, 2006, 44(4):788-794.
|
40. |
Van Herreweghe F, Mao J, Chaplen FW, et al. Tumor necrosis factor-induced modulation of glyoxalase I activities through phosphorylation by PKA results in cell death and is accompanied by the formation of a specific methylglyoxal-derived AGE[J]. Proc Natl Acad Sci U S A, 2002, 99(2):949-954.
|
41. |
Kim YS, Morgan MJ, Choksi S, et al. TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death[J]. Mol Cell, 2007, 26(5):675-687.
|
42. |
Chen TY, Chi IH, Wang JS, et al. Reactive Oxygen species are involved in FasL-induced caspase-independent cell death and inflammatory responses[J]. Free Radical Biol Med, 2009, 46(5):643-655.
|
43. |
Thon L, Mohlig H, Mathieu S, et al. Ceramide mediates caspase-independent programmed cell death[J]. FASEB J, 2005, 19(14):1945-1956.
|
44. |
Vanden Berghe T, Vanlangenakker N, Parthoens E, et al. Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features[J]. Cell Death Differ, 2010, 17(6):922-930.
|
45. |
Wu YT, Tan HL, Huang Q, et al. zVAD-induced necroptosis in L929 cells depends on autocrine production of TNFalpha mediated by the PKC-MAPKs-AP-1 pathway[J]. Cell Death Differ, 2011, 18(1):26-37.
|
46. |
Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death[J]. Physiol Rev, 2007, 87(1):99-163.
|
47. |
Baines CP, Kaiser RA, Sheiko TA, et al. Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death[J]. Nat Cell Biol, 2007, 9(5):550-555.
|
48. |
Boya P, Kroemer G. Beclin 1:a BH3-only protein that fails to induce apoptosis[J]. Oncogene, 2009, 28(21):2125-2127.
|
49. |
Galluzzi L, Blomgren K, Kroemer G. Mitochondrial membrane permeabilization in neuronal injury[J]. Nat Rev Neurosci, 2009, 10(7):481-494.
|
50. |
Boya P, Andreau K, Poncet D, et al. Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion[J]. J Exp Med, 2003, 197(10):1323-1334.
|
51. |
Kroemer G, Jaattela M. Lysosomes and autophagy in cell death control[J]. Nat Rev Cancer, 2005, 5(11):886-897.
|
52. |
Bano D, Young KW, Guerin CJ, et al. Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity[J]. Cell, 2005, 120(2):275-285.
|
53. |
Tang D, Kang R, Xiao W, et al. Nuclear heat shock protein 72 as a negative regulator of oxidative stress (hydrogen peroxide)-induced HMGB1 cytoplasmic translocation and release[J]. J Immunol, 2007, 178(11):7376-7384.
|
54. |
Bonventre JV, Huang Z, Taheri MR, et al. Reduced fertility and postischaemic brain injury in mice deficient in cytosolic phospholipase A2[J]. Nature, 1997, 390(6660):622-625.
|
55. |
Mota RA, Sanchez-Bueno F, Saenz L, et al. Inhibition of poly (ADP-ribose) polymerase attenuates the severity of acute pancreatitis and associated lung injury[J]. Lab Invest, 2005, 85(10):1250-1262.
|
56. |
Maxwell SA, Mousavi-Fard S. Non-Hodgkin's B-cell lymphoma:advances in molecular strategies targeting drug resistance[J]. Exp Biol Med, 2013, 238(9):971-990.
|
57. |
Kęsy J, Januszkiewicz-Lewandowska D. Genes and childhood leukemia[J]. Postepy Hig Med Dosw (Online), 2015(69):302-308.
|
58. |
Han W, Li L, Qiu S, et al. Shikonin circumvents cancer drug resistance by induction of a necroptotic death[J]. Mol Cancer Ther, 2007, 6(5):1641-1649.
|