1. |
张玫莹, 朱铁年, 赵瑞景, 等. 小凹蛋白-1 调控表皮生长因子受体活化对恶性黑色素瘤细胞生物学行为的影响. 解放军医药杂志, 2018, 30(4): 46-50.
|
2. |
杨娟丽. Caveolin-1 调控表皮生长因子受体活化对结直肠癌细胞增殖和转移的影响. 石家庄: 河北医科大学, 2018.
|
3. |
于卫民, 姬建胜, 王冬冬. RNA 干扰 Caveolin-1 基因表达抑制食管癌细胞增殖侵袭及 PI3K/AKT 信号通路的研究. 中国地方病防治杂志, 2018, 33(3): 357.
|
4. |
钟义良, 张融融, 黄思源, 等. 急性脑梗死患者血清陷窝蛋白 1 水平与早期神经功能恶化的关系. 上海交通大学学报(医学版), 2017, 37(12): 1678-1681.
|
5. |
郑庆玲. Caveolin-1 的生物学结构及在肿瘤研究中的进展. 现代医药卫生, 2007, 23(24): 3710-3711.
|
6. |
Ohadi M, Heshmati Y, Mirabzadeh A. P01-99 Extreme alleles at the human caveolin 1 gene novel purine complex and risk of Alzheimer’s disease. Eur Psychiatry, 2009, 24(Suppl 1): S487.
|
7. |
Heshmati Y, Mirabzadeh A, Feizzade G, et al. A novel polymorphic purine complex at the 1.5 kb upstream region of the human caveolin-1 gene and risk of Alzheimer’s disease; extra-short alleles and accumulated allele homozygosity. Am J Med Genet B Neuropsychiatr Genet, 2009, 150B(2): 248-253.
|
8. |
Zarif Yeganeh M, Mirabzadeh A, Khorram Khorshid HR, et al. Novel extreme homozygote haplotypes at the human caveolin 1 gene upstream purine complex in sporadic Alzheimer’s disease. Am J Med Genet B Neuropsychiatr Genet, 2010, 153B(1): 347-349.
|
9. |
Heidari A, Behmanesh M, Sahraian MA, et al. The human caveolin 1 gene upstream purine complex and neurodegeneration-a common signature. J Neuroimmunol, 2011, 236(1/2): 106-110.
|
10. |
Heidari A, Hosseinkhani S, Talebi S, et al. Haplotypes across the human caveolin 1 gene upstream purine complex significantly alter gene expression: implication in neurodegenerative disorders. Gene, 2012, 505(1): 186-189.
|
11. |
吴平. ApoE 基因多态性和cav-1 基因上游 PPC 长度多态性与 AD、MCI 和 VD 的相关性研究. 上海: 复旦大学, 2009.
|
12. |
Gioiosa L, Raggi C, Ricceri LJ, et al. Altered emotionality, spatial memory and cholinergic function in caveolin-1 knock-out mice. Behav Brain Res, 2008, 188(2): 255-262.
|
13. |
王红霞. 不同年龄大鼠脑内 Caveolin-1 蛋白的表达及其与学习记忆关系研究. 大连: 辽宁师范大学, 2006.
|
14. |
邹伟, 王红霞, 刘晶, 等. 大鼠脑内 caveolin-1 蛋白的表达及其在分辨学习中的作用. 生理学报, 2006, 58(5): 429-434.
|
15. |
嵇志红, 邹伟. 空间学习记忆训练对大鼠海马 Caveolin-1 蛋白表达的影响. 大连大学学报, 2013(6): 35-37, 43.
|
16. |
王璐. Caveolin-1 蛋白在空间学习记忆中的作用及其信号转导机制的研究. 大连: 辽宁师范大学, 2008.
|
17. |
Egawa J, Schilling JM, Cui W, et al. Neuron-specific caveolin-1 overexpression improves motor function and preserves memory in mice subjected to brain trauma. FASEB J, 2017, 31(8): 3403-3411.
|
18. |
袁林. 固本健脑法对 MCI 大鼠学习记忆能力及海马 Caveolin-1 的影响. 武汉: 湖北中医药大学, 2011.
|
19. |
陈冬冬. 新型钒氧配合物对糖尿病小鼠学习记忆功能损伤的干预及与 Caveolin-1 表达的关系. 大连: 辽宁师范大学, 2009.
|
20. |
姜梅. 基于肾藏志理论的肾虚质大鼠海马区学习记忆蛋白 ERK1 及 Caveolin-1 表达研究. 咸阳: 陕西中医药大学, 2017.
|
21. |
Ikezu T, Trapp BD, Song KS, et al. Caveolae, plasma membrane microdomains for α-secretase-mediated processing of the amyloid precursor protein. J Biol Chem, 1998, 273(17): 10485-10495.
|
22. |
Hattori C, Asai M, Onishi H, et al. BACE1 interacts with lipid raft proteins. J Neurosci Res, 2006, 84(4): 912-917.
|
23. |
Head BP, Peart JN, Panneerselvam M, et al. Loss of caveolin-1 accelerates neurodegeneration and aging. PLoS One, 2010, 5(12): e15697.
|
24. |
Jang SK, Yu JM, Kim ST, et al. An Aβ42 uptake and degradation via Rg3 requires an activation of caveolin, clathrin and a beta-degrading enzymes in microglia. Eur J Pharmacol, 2015, 758: 1-10.
|
25. |
Pietri M, Dakowski C, Hannaoui SA, et al. PDK1 decreases TACE-mediated alpha-secretase activity and promotes disease progression in prion and Alzheimer’s diseases. Nat Med, 2013, 19(9): 1124-1131.
|
26. |
Hashimoto M, Hossain S, Katakura M, et al. The binding of Aβ1-42 to lipid rafts of RBC is enhanced by dietary docosahexaenoic acid in rats: implicates to Alzheimer’s disease. Biochimica et Biophysica Acta, 2015, 1848(6): 1402-1409.
|
27. |
Zhu DH, Su YC, Fu BM, et al. Magnesium reduces blood-brain barrier permeability and regulates amyloid-beta transcytosis. Mol Neurobiol, 2018, 55(9): 7118-7131.
|
28. |
András IE, Eum SY, Toborek M. Lipid rafts and functional caveolae regulate HIV-induced amyloid beta accumulation in brain endothelial cells. Biochem Biophys Res Commun, 2012, 421(2): 177-183.
|
29. |
Van Helmond ZK, Miners JS, Bednall E, et al. Caveolin-1 and-2 and their relationship to cerebral amyloid angiopathy in Alzheimer’s disease. Neuropathol Appl Neurobiol, 2007, 33(3): 317-327.
|
30. |
Kang QM, Xiang YE, Li D, et al. MiR-124-3p attenuates hyperphosphorylation of tau protein-induced apoptosis via caveolin-1-PI3K/Akt/GSK3 beta pathway in N2a/APP695swe cells. Oncotarget, 2017, 8(15): 24314-24326.
|
31. |
Wu J, Zhou SL, Pi LH, et al. High glucose induces formation of tau hyperphosphorylation via Cav-1-mTOR pathway: a potential molecular mechanism for diabetes-induced cognitive dysfunction. Oncotarget, 2017, 8(25): 40843-40856.
|
32. |
Zhao YL, Song JN, Ma XD, et al. Rosiglitazone ameliorates diffuse axonal injury by reducing loss of tau and up-regulating caveolin-1 expression. Neural Regen Res, 2016, 11(6): 944-950.
|
33. |
朱耀乾. 固本健脑法对 AD 模型大鼠海马区 Caveolin-1、树突棘、P-tau 的影响. 恩施: 湖北民族学院, 2015.
|
34. |
胡玉萍, 王平, 袁德培, 等. 固本健脑法对 Alzheimer 病模型大鼠海马区树突棘及 P-tau 的影响. 世界科学技术-中医药现代化, 2016, 18(1): 53-59.
|
35. |
陈谦峰. 固本健脑法对 AD 细胞模型的作用及 Caveolin-1、P-tau 影响的研究. 武汉: 湖北中医药大学, 2015.
|
36. |
Sun J, Zhang X, Wang C, et al. Curcumin decreases hyperphosphorylation of tau by down-regulating caveolin-1/GSK-3β in N2a/APP695swe cells and APP/PS1 double transgenic Alzheimer’s disease mice. Am J Chin Med, 2017, 45(8): 1667-1682.
|
37. |
孙洁芸. 姜黄素通过 Caveolin-1 在 AD 中发挥神经保护作用的分子机制. 重庆: 重庆医科大学, 2014.
|
38. |
向月, 张雄, 杨军, 等. miR-124-3p 通过负调控 Caveolin-1 表达降低 N2a/APPswe 细胞内 Tau 蛋白磷酸化水平. 基础医学与临床, 2015, 35(5): 579-584.
|