1. |
Wang H, Tian J, Du F, et al. Effect of peritoneal transport characteristics on clinical outcome in nondiabetic and diabetic nephropathy patients with peritoneal dialysis. Iran J Kidney Dis, 2019, 13(1): 56-66.
|
2. |
Yoowannakul S, Harris LS, Davenport A. Peritoneal protein losses depend on more than just peritoneal dialysis modality and peritoneal membrane transporter status. Ther Apher Dial, 2018, 22(2): 171-177.
|
3. |
Davies SJ. Longitudinal relationship between solute transport and ultrafiltration capacity in peritoneal dialysis patients. Kidney Int, 2004, 66(6): 2437-2445.
|
4. |
Fernandes A, Ribera-Sanchez R, Rodríguez-Carmona A, et al. Peritoneal water transport characteristics of diabetic patients undergoing peritoneal dialysis: a longitudinal study. Am J Nephrol, 2017, 46(1): 47-54.
|
5. |
Chung SH, Chu WS, Lee HA, et al. Peritoneal transport characteristics, comorbid diseases and survival in CAPD patients. Perit Dial Int, 2000, 20(5): 541-547.
|
6. |
Brimble KS, Walker M, Margetts PJ, et al. Meta-analysis: peritoneal membrane transport, mortality, and technique failure in peritoneal dialysis. J Am Soc Nephrol, 2006, 17(9): 2591-2598.
|
7. |
蒋静, 钟慧, 秦敏, 等. 初始腹膜高转运特性与腹膜透析患者预后的关系. 华西医学, 2019, 34(7): 752-758.
|
8. |
Rumpsfeld M, McDonald SP, Johnson DW. Higher peritoneal transport status is associated with higher mortality and technique failure in the Australian and New Zealand peritoneal dialysis patient populations. J Am Soc Nephrol, 2006, 17(1): 271-278.
|
9. |
Twardowski Z, Nolph K, Khanna R. Peritoneal equilibration test. Perit Dial Bull, 1987, 7(3): 138-147.
|
10. |
陈香美, 倪兆慧, 付平, 等. 腹膜透析标准操作规程. 北京: 人民军医出版社, 2012: 96-98.
|
11. |
Ates K, Ertürk S, Nergisoglu G, et al. Sex-dependent variations in peritoneal membrane transport properties in CAPD patients. Nephrol Dial Transplant, 1996, 11(11): 2375-2376.
|
12. |
Fan J, Guo Q, Zhou Q, et al. Gender impact on baseline peritoneal transport properties in incident peritoneal dialysis patients. Int Urol Nephrol, 2019, 51(11): 2055-2061.
|
13. |
Armoni M, Rafaeloff R, Barzilai A, et al. Sex differences in insulin action on glucose transport and transporters in human omental adipocytes. J Clin Endocrinol Metab, 1987, 65(6): 1141-1146.
|
14. |
Nakamoto H, Imai H, Kawanishi H, et al. Low serum albumin in elderly continuous ambulatory peritoneal dialysis patients is attributable to high permeability of peritoneum. Adv Perit Dial, 2001, 17: 238-243.
|
15. |
Unal A, Sipahioglu M. H, Kocyigit I, et al. Risk factor(s) related to high membrane permeability in peritoneal dialysis. Ren Fail, 2016, 38(2): 238-241.
|
16. |
Dobbie JW. Monitoring peritoneal histopathology in peritoneal dialysis: the role of a biopsy registry. Dial Transplant, 1989, 18: 319-325.
|
17. |
Contreras-Velázquez JC, Soto V, Jaramillo-Rodríguez Y, et al. Clinical outcomes and peritoneal histology in patients starting peritoneal dialysis are related to diabetic status and serum albumin levels. Kidney Int Suppl, 2008, 73(108): S34-S41.
|
18. |
Davenport A, Willicombe MK. Does diabetes mellitus predispose to increased fluid overload in peritoneal dialysis patients?. Nephron Clin Pract, 2010, 114(1): c60-c66.
|
19. |
Chou MY, Kao MT, Lai MN, et al. Comparisons of the peritoneal equilibration test and ultrafiltration in patients with and without diabetes mellitus on continuous ambulatory peritoneal dialysis. Am J Nephrol, 2006, 26(1): 87-90.
|
20. |
Koçak G, Azak A, Astarcı HM, et al. Effects of renin-angiotensin-aldosterone system blockade on chlorhexidine gluconate-induced sclerosing encapsulated peritonitis in rats. Ther Apher Dial, 2012, 16(1): 75-80.
|
21. |
Duman S, Sen S, Duman C, et al. Effect of valsartan versus lisinopril on peritoneal sclerosis in rats. Int J Artif Organs, 2005, 28(2): 156-163.
|
22. |
Io H, Hamada C, Ro Y, et al. Morphologic changes of peritoneum and expression of VEGF in encapsulated peritoneal sclerosis rat models. Kidney Int, 2004, 65(5): 1927-1936.
|
23. |
Kariya T, Nishimura H, Mizuno M, et al. TGF-β1-VEGF-A pathway induces neoangiogenesis with peritoneal fibrosis in patients undergoing peritoneal dialysis. Am J Physiol Renal Physiol, 2018, 314(2): F167-F180.
|
24. |
Wontanatawatot W, Eiam-Ong S, Leelahavanichkul A, et al. An update on RAAS blockade and peritoneal membrane preservation: the ace of art. J Med Assoc Thai, 2011, 94(Suppl 4): S175-S183.
|
25. |
Trošt Rupnik A, Pajek J, Guček A, et al. Influence of renin-angiotensin-aldosterone system-blocking drugs on peritoneal membrane in peritoneal dialysis patients. Ther Apher Dial, 2013, 17(4): 425-430.
|
26. |
Sauter M, Cohen CD, Wörnle M, et al. ACE inhibitor and AT1-receptor blocker attenuate the production of VEGF in mesothelial cells. Perit Dial Int, 2007, 27(2): 167-172.
|
27. |
Kolesnyk I, Noordzij M, Dekker FW, et al. A positive effect of AII inhibitors on peritoneal membrane function in long-term PD patients. Nephrol Dial Transplant, 2009, 24(1): 272-277.
|
28. |
Imai H, Nakamoto H, Ishida Y, et al. Renin-angiotensin system plays an important role in the regulation of water transport in the peritoneum. Adv Perit Dial, 2001, 17: 20-24.
|
29. |
孙方云, 冉盖, 向思云, 等. 腹膜透析患者腹透液蛋白质丢失及其影响因素分析. 温州医科大学学报, 2015, 45(1): 18-21.
|
30. |
Margetts PJ, McMullin JP, Rabbat CG, et al. Peritoneal membrane transport and hypoalbuminemia: cause or effect?. Perit Dial Int, 2000, 20(1): 14-18.
|
31. |
Harrison R. Structure and function of xanthine oxidoreductase: where are we now?. Free Radic Biol Med, 2002, 33(6): 774-797.
|
32. |
Beberashvili I, Sinuani I, Azar A, et al. Serum uric acid as a clinically useful nutritional marker and predictor of outcome in maintenance hemodialysis patients. Nutrition, 2015, 31(1): 138-147.
|
33. |
Xiao X, Ye H, Yi C, et al. Roles of peritoneal clearance and residual kidney removal in control of uric acid in patients on peritoneal dialysis. BMC Nephrol, 202, 21(1): 148.
|